
WLAN Toolbox™
User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

WLAN Toolbox™ User's Guide
© COPYRIGHT 2015–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
October 2015 Online only New for Version 1.0 (Release 2015b)
March 2016 Online only Revised for Version 1.1 (Release 2016a)
September 2016 Online only Revised for Version 1.2 (Release 2016b)
March 2017 Online only Revised for Version 1.3 (Release 2017a)
September 2017 Online only Revised for Version 1.4 (Release 2017b)
March 2018 Online only Revised for Version 1.5 (Release 2018a)
September 2018 Online only Revised for Version 2.0 (Release 2018b)
March 2019 Online only Revised for Version 2.1 (Release 2019a)
September 2019 Online only Revised for Version 2.2 (Release 2019b)
March 2020 Online only Revised for Version 3.0 (Release 2020a)
September 2020 Online only Revised for Version 3.1 (Release 2020b)
March 2021 Online only Revised for Version 3.2 (Release 2021a)
September 2021 Online only Revised for Version 3.3 (Release 2021b)
March 2022 Online only Revised for Version 3.4 (Release 2022a)
September 2022 Online only Revised for Version 3.5 (Release 2022b)
March 2023 Online only Revised for Version 3.6 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

PHY Modeling
1

PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence 1-2

802.11be Waveform Generation . 1-18

802.11az Waveform Generation . 1-48

Build VHT PPDU . 1-53

Generate VHT Multi-User Waveform . 1-56

Basic VHT Data Recovery . 1-60

802.11ax Waveform Generation . 1-64

Basic WLAN Link Modeling . 1-86

802.11ac Multi-User MIMO Precoding . 1-93

MAC Modeling
2

802.11 MAC Frame Generation . 2-2

802.11 MAC Frame Decoding . 2-12

802.11ac Waveform Generation with MAC Frames 2-18

802.11 OFDM Beacon Frame Generation . 2-25

Signal Transmission
3

802.11be Transmitter Measurements . 3-2

802.11ba WUR Waveform Generation and Analysis 3-14

802.11ad Waveform Generation with Beamforming 3-21

iii

Contents

802.11ac Transmit Beamforming . 3-26

802.11ah Waveform Generation . 3-36

802.11n Link in Simulink . 3-45

Signal Reception
4

Recover and Analyze Packets in 802.11 Waveform 4-2

Recovery Procedure for an 802.11ax Packet . 4-13

Recovery Procedure for an 802.11ac Packet . 4-30

Joint Sampling Clock and Carrier Frequency Offset Tracking 4-41

Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel
. 4-50

End-to-End VHT Simulation with Frequency Correction 4-53

Propagation Channel Models
5

802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay
Channel . 5-2

802.11ac Packet Error Rate Simulation for 8x8 TGac Channel 5-10

802.11n Packet Error Rate Simulation for 2x2 TGn Channel 5-16

802.11ah Packet Error Rate Simulation for 2x2 TGah Channel 5-22

Delay Profile and Fluorescent Lighting Effects . 5-28

End-to-End Simulation
6

Detect Human Presence Using WLAN Signals and Deep Learning 6-2

SNR Definition in End-to-End Simulations . 6-13

802.11be Packet Error Rate Simulation for Uplink Trigger-Based Format
. 6-17

iv Contents

802.11be Downlink Multi-User MIMO and OFDMA Throughput
Simulation . 6-26

802.11be Packet Error Rate Simulation for an EHT MU Single-User
Packet Format . 6-37

802.11ax Packet Error Rate Simulation for Single-User Format 6-44

802.11ax Downlink OFDMA and Multi-User MIMO Throughput
Simulation . 6-51

802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format
. 6-62

802.11ax Compressed Beamforming Packet Error Rate Simulation 6-71

802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-
Based Feedback NDP . 6-80

Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and
Deep Learning . 6-87

802.11az Positioning Using Super-Resolution Time of Arrival Estimation
. 6-105

Design a Deep Neural Network with Simulated Data to Detect WLAN
Router Impersonation . 6-119

Test a Deep Neural Network with Captured Data to Detect WLAN Router
Impersonation . 6-133

802.11ad Packet Error Rate Simulation for Control PHY 6-144

802.11ad Single Carrier Link with RF Beamforming in Simulink 6-150

802.11p Packet Error Rate Simulation for a Vehicular Channel 6-158

802.11 Dynamic Rate Control Simulation . 6-164

System-Level Simulation
7

Spatial Reuse with BSS Coloring in 802.11ax Network Simulation 7-2

802.11ax Downlink OFDMA Multinode System-Level Simulation 7-12

Noncollaborative Bluetooth LE Coexistence with WLAN Signal
Interference . 7-21

Get Started with WLAN System-Level Simulation in MATLAB 7-31

v

802.11ax Multinode System-Level Simulation of Residential Scenario . 7-40

802.11 MAC and Application Throughput Measurement 7-49

802.11ax System-Level Simulation with Physical Layer Abstraction . . . 7-66

802.11ax PHY-Focused System-Level Simulation 7-77

Physical Layer Abstraction for System-Level Simulation 7-90

Generate and Visualize FTP Application Traffic Pattern 7-105

Simulate an 802.11ax Network with Uplink and Downlink Application
Traffic . 7-111

WLAN System-Level Simulation Statistics . 7-114
Default Statistics . 7-114
Additional Statistics . 7-116

Simulate an 802.11ax Network with Full MAC and Abstracted PHY . . . 7-118

Create, Configure, and Simulate an 802.11ax Mesh Network 7-121

Simulate a Multiband 802.11ax Network . 7-124

Simulate an 802.11ax Hybrid Mesh Network . 7-127

Test and Measurement
8

Modeling and Testing an 802.11ax RF Receiver with 5G Interference . . . 8-2

Modeling and Testing an 802.11ax RF Transmitter 8-21

802.11ac Receiver Minimum Input Sensitivity Test 8-39

802.11ac Transmitter Measurements . 8-46

Generate Wireless Waveform in Simulink Using App-Generated Block
. 8-62

802.11ad Transmitter Spectral Emission Mask Testing 8-74

802.11p Spectral Emission Mask Testing . 8-79

vi Contents

Code Generation and Deployment
9

What is C Code Generation from MATLAB? . 9-2
Using MATLAB Coder . 9-2
C/C++ Compiler Setup . 9-2
Functions and System Objects That Support Code Generation 9-3

Code Generation of WLAN Toolbox Features . 9-4

Software-Defined Radio
10

Image Transmission and Reception Using 802.11 Waveform and SDR
. 10-2

OFDM Wi-Fi Scanner Using SDR Preamble Detection 10-20

OFDM Beacon Receiver Using Software-Defined Radio 10-33

vii

PHY Modeling

1

PHY Simulation of Bluetooth BR/EDR, LE, and WLAN
Coexistence

This example shows you how to model homogenous and heterogeneous coexistence between
Bluetooth® basic rate/enhanced data rate (BR/EDR), low energy (LE) , and wireless local area
waveforms (WLAN) by using Bluetooth® Toolbox.

Using this example, you can:

• Perform Bluetooth BR/EDR and LE end-to-end simulation in the presence of Bluetooth BR/EDR,
LE, or WLAN interference.

• Perform adaptive frequency hopping (AFH) by classifying the channels as "good" or "bad" based
on the packet error rate (PER).

• Compute the bit error rate (BER) and signal-to-interference-plus noise ratio (SINR).
• Visualize the spectrum and spectrogram of the Bluetooth BR/EDR or LE waveform in the presence

of interference.

Bluetooth and WLAN Coexistence

Bluetooth operates in the unlicensed 2.4 GHz industrial, scientific, and medical (ISM) band from 2.4
to 2.4835 GHz, which is also used by other technologies such as Zigbee and WLAN. Multiple
homogenous and heterogeneous networks operating in this band are likely to coexist in a physical
scenario. To mitigate interference, Bluetooth and WLAN implement AFH and carrier-sense multiple
access with collision avoidance (CSMA/CA), respectively. AFH enables Bluetooth devices to improve
their robustness to interference and avoid interfering with other devices in the 2.4 GHz ISM band.
The basic principle is to classify interference channels as bad channels and discard them from the list
of available channels. This classification mechanism of AFH enables a Bluetooth device to use 79
channels or fewer in BR/EDR mode and 40 channels or fewer in LE mode. The Bluetooth Core
Specification [2 on page 1-16] allows a minimum of 20 channels in BR/EDR mode and 2 channels in
LE mode. For more information about coexistence between Bluetooth and WLAN, see “Bluetooth-
WLAN Coexistence” (Bluetooth Toolbox).

Coexistence mechanisms can be classified into two categories: collaborative or noncollaborative,
depending on whether the involved networks operate independently of one another or coordinate
their use of the spectrum. In noncollaborative coexistence, each network treats other networks as
interference and performs interference mitigation techniques. In collaborative coexistence, all the
networks collaborate and coordinate their use of the spectrum. This example illustrates a
noncollaborative coexistence mechanism between homogenous and heterogeneous networks.

This example uses these terminologies:

• AWN - Affected wireless node, can be one of these:

- Bluetooth: BR, EDR 2Mbps, EDR 3Mbps, LE 1Mbps, LE 2Mbps, LE 500Kbps, and LE 125Kbps

• IWN - Interfering wireless node, can be one of these:

- Bluetooth:

BR, EDR 2Mbps, EDR 3Mbps, LE 1Mbps, LE 2Mbps, LE 500Kbps, and LE 125Kbps

- WLAN:

1 PHY Modeling

1-2

802.11b with 22 MHz bandwidth

802.11g with 20 MHz bandwidth

802.11n with 20 MHz and 40 MHz bandwidths

802.11ax with 20 MHz and 40 MHz bandwidths

Impact of Interference in Space, Time, and Frequency Domains

Space: As the distance between AWN and IWN nodes increases, the impact of interference in space
domain decreases. In this figure, if d1 and d2 increase, the impact of the IWN transmitter
interference on the AWN receiver decreases.

Time: Depending on the packet transmission timings, three possible collision probabilities arise in
the time domain: full collision, partial collision, or no collision.

• Full - IWN packet completely interferes with the AWN packet.
• Partial - IWN packet partially interferes with the AWN packet with the given probability.
• No - IWN packet does not interfere with the AWN packet.

 PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence

1-3

Frequency: As the channel separation between the AWN and IWN nodes increases, the impact of
interference in frequency domain decreases. In this figure, if difference between fIWN and fAWN
increase, the impact of the IWN transmitter interference on the AWN receiver decreases.

1 PHY Modeling

1-4

Simulation Parameters

Specify the AWN parameters such as the signal type, transmitter position, receiver position,
transmitter power, and packet type.

Specify frequency hopping as one of these values.

• Off (default) - To run simulation at a fixed frequency, use this value. If you use this value, the
example configures awnFrequency.

• On - To run simulation with AFH, use this value. If you use this value, the example does not
configure awnFrequency.

awnSignalType = ;

awnTxPosition = ; % In meters

awnRxPosition = ; % In meters

awnTxPower = ; % In dBm

awnPacket = ;

awnFrequencyHopping = ;

awnFrequency = *1e6; % In Hz

 PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence

1-5

Configure a single or multiple IWNs and their respective parameters such as the signal type,
transmitter position, fixed frequency of operation, and transmitter power. Create and configure
multiple IWN nodes by using the IWN structure with different indices.

Specify the collision probability in the range [0,1]. Any value between 0 and 1 simulates partial
collision. To simulate full collision, set this value to 1. To disable interference and simulate with no
collisions, set this value to 0.

Add different types of WLAN signals as interference using WLAN Toolbox™. If you do not have WLAN
Toolbox™, use WLANBasebandFile to add 802.11ax signal.

iwn(1).SignalType = ;
iwn(1).TxPosition = [20,0,0]; % In meters
iwn(1).Frequency = 2437e6; % In Hz
iwn(1).TxPower = 30; % In dBm
iwn(1).CollisionProbability = 1; % Probability of collision in time, must be between [0,1]

iwn(2).SignalType = ;
iwn(2).TxPosition = [25,0,0]; % In meters
iwn(2).Frequency = 2420e6; % In Hz
iwn(2).TxPower = 30; % In dBm
iwn(2).CollisionProbability = 0.2; % Probability of collision in time, must be between [0,1]

Specify the environment, bit energy to noise density ratio (Eb/No), sample rate, and number of
packets.

environment = ;
EbNo = 10; % In dB
sampleRate = 80e6; % In Hz
numPackets = 500;

Set the seed for the random number generator.

rng default;

Configure the waveform transmission and reception parameters of the AWN.

phyFactor = 1+strcmp(awnSignalType,"LE2M");
sps = sampleRate/(1e6*phyFactor); % Samples per symbol
if sps > 8 % Decimation factor for the receiver filter
 decimationFactor = gcd(sps,8);
else
 decimationFactor = 1;
end

if any(strcmp(awnSignalType,["LE1M","LE2M","LE500K","LE125K"]))
 payloadLength = 100; % Length of the payload in bytes
 accessAddress = "01234567"; % Access address
 accessAddBits = int2bit(hex2dec(accessAddress),32,false);

 % Derive channel index based on the AWN frequency
 channelIndexArray = [37 0:10 38 11:36 39];
 awnBandwidth = 2e6;
 channelIndex = channelIndexArray((awnFrequency-2402e6)/awnBandwidth+1);

1 PHY Modeling

1-6

 % Configure the receiver parameters in a structure
 rxCfg = struct(Mode=awnSignalType,SamplesPerSymbol=sps/decimationFactor,ChannelIndex=channelIndex, ...
 DFPacketType=awnPacket,AccessAddress=accessAddBits);
 rxCfg.CoarseFreqCompensator = comm.CoarseFrequencyCompensator(Modulation="OQPSK", ...
 SampleRate=sampleRate/decimationFactor, ...
 SamplesPerSymbol=2*rxCfg.SamplesPerSymbol, ...
 FrequencyResolution=100);
 rxCfg.PreambleDetector = comm.PreambleDetector(Detections="First");
else
 % Create and configure Bluetooth waveform generation parameters
 awnWaveformConfig = bluetoothWaveformConfig(Mode=awnSignalType,PacketType=awnPacket, ...
 SamplesPerSymbol=sps);
 if strcmp(awnPacket,"DM1")
 awnWaveformConfig.PayloadLength = 17; % Maximum length of DM1 packets in bytes
 end
 payloadLength = getPayloadLength(awnWaveformConfig); % Length of the payload

 % Get the receiver configuration parameters
 rxCfg = getPhyConfigProperties(awnWaveformConfig);
 rxCfg.SamplesPerSymbol = sps/decimationFactor;
end

Estimate the AWN path loss.

% Estimate distance between AWN transmitter and AWN receiver
distanceAWNTxRx = sqrt(sum((awnTxPosition-awnRxPosition).^2));
[awnPathloss,pathlossdB] = helperBluetoothEstimatePathLoss(environment,distanceAWNTxRx);

Create and configure the IWN by using the helperIWNConfig object. Generate IWN waveforms by
using the generateIWNWaveform method. Add the path loss based on the environment and node
positions by using the applyPathloss method.

iwnConfig = helperIWNConfig(IWN=iwn,SampleRate=sampleRate,Environment=environment);
iwnWaveform = generateIWNWaveform(iwnConfig);
[iwnWaveformPL,iwnPathloss] = applyPathloss(iwnConfig,iwnWaveform,awnRxPosition);

Use the bluetoothFrequencyHop and bleChannelSelection objects to select a channel index
for the transmission and reception of Bluetooth BR/EDR and LE waveforms, respectively.

if strcmp(awnFrequencyHopping,"On")
 if any(strcmp(awnSignalType,["LE1M","LE2M","LE500K","LE125K"]))
 frequencyHop = bleChannelSelection; % Bluetooth LE channel index System object™
 numBTChannels = 37; % Number of Bluetooth LE channels
 minChannels = 2; % Minimum number of channels to classify
 else
 frequencyHop = bluetoothFrequencyHop; % Bluetooth BR/EDR channel index object
 frequencyHop.SequenceType = "Connection Adaptive";
 numBTChannels = 79; % Number of Bluetooth BR/EDR channels
 minChannels = 20; % Minimum number of channels to classify
 inputClock = 0;
 numSlots = 1*(any(strcmp(awnPacket,["ID","NULL","POLL","FHS","HV1","HV2", ...
 "HV3","DV","EV3","DM1","DH1","AUX1","2-DH1","3-DH1","2-EV3","3-EV3"])))...
 +(3*any(strcmp(awnPacket,["EV4","EV5","DM3","DH3","2-EV5","3-EV5","2-DH3", ...
 "3-DH3"])))+ (5*any(strcmp(awnPacket,["DM5","DH5","2-DH5","3-DH5"])));
 slotValue = numSlots*2;
 clockTicks = slotValue*2; % Clock ticks (one slot is two clock ticks)
 end
end

 PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence

1-7

Design a receiver filter to capture the AWN waveform.

if any(strcmp(awnSignalType,["EDR2M","EDR3M"]))
 rolloff = 0.4;
 span = 8;
 filterCoeff = rcosdesign(rolloff,span,sps,"sqrt");
else
 N = 200; % Order
 Fc = 1.5e6/(1+strcmp(awnSignalType,"BR")); % Cutoff frequency
 flag = "scale"; % Sampling flag
 alpha = 3; % Window parameter

 % Create the window vector for the design algorithm
 win = gausswin(N+1,alpha);

 % Calculate the coefficients using the FIR1 function
 filterCoeff = fir1(N,Fc/(sampleRate/2),"low",win,flag);
end
firdec = dsp.FIRDecimator(decimationFactor,filterCoeff);

Compute the signal-to-noise ratio (SNR).

codeRate = 1*any(strcmp(awnSignalType,["LE1M","LE2M"]))+1/2*strcmp(awnSignalType,"LE500K")+1/8*strcmp(awnSignalType,"LE125K")+...
 any(strcmp(awnSignalType,["BR","EDR2M","EDR3M"]))*(1-2/3*strcmp(awnPacket,"HV1")-...
 1/3*any(strcmp(awnPacket,["FHS","DM1","DM3","DM5","HV2","DV","EV4"]))); % Code rate
bitsPerSymbol = 1+ strcmp(awnSignalType,"EDR2M") + 2*(strcmp(awnSignalType,"EDR3M")); % Number of bits per symbol
snr = EbNo + 10*log10(codeRate) + 10*log10(bitsPerSymbol) - 10*log10(sps);

Create and configure the spectrum analyzer to visualize the spectrum and spectrogram of the
Bluetooth BR/EDR or LE waveform in the presence of interference.

spectrumAnalyzer = dsp.SpectrumAnalyzer(...
 Name="Bluetooth Coexistence Modeling", ...
 ViewType="Spectrum and spectrogram", ...
 TimeResolutionSource="Property", ...
 TimeResolution=0.0005, ...
 SampleRate=sampleRate, ...
 TimeSpanSource="Property", ...
 TimeSpan=0.05, ...
 FrequencyResolutionMethod="WindowLength", ...
 WindowLength=512, ...
 AxesLayout="Horizontal", ...
 YLimits=[-100 20], ...
 ColorLimits=[-100 20]);

Coexistence Simulation

This diagram summarizes the example workflow.

1 PHY Modeling

1-8

Perform these steps to simulate the coexistence scenario.

1 Generate AWN (Bluetooth BR/EDR or LE) waveforms.
2 Distort each AWN waveform with these RF impairments: timing offset, carrier frequency offset,

and DC offset.
3 Hop the waveform (frequency shift based on a center frequency of 2440 MHz) using the channel

index derived from AFH.
4 Scale the hopped waveform with the transmitter power and path loss.
5 Generate and add IWN waveforms (Bluetooth BR/EDR, LE, or WLAN) based on the collision

probabilities.
6 Add additive white Gaussian noise (AWGN).
7 Filter the noisy waveform.
8 Recover the bits from the filtered waveform by performing timing synchronization, carrier

frequency offset correction, and DC offset correction.
9 Compute the PER, BER, and SINR.
10 If frequency hopping is on, classify the channels.

% Classify the channels for every |numPacketsToClassify| packets. If the PER of the
% channel is greater than |thresholdPER|, then map the corresponding channel
% as bad.
numPacketsToClassify = 50;
thresholdPER = 0.2;

% Create an instance of the error rate
errorRate = comm.ErrorRate;

% Initialize variables to perform the simulation
numErrors = 0;
numPktLost = 0;
countPER = 0;

 PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence

1-9

countPreviousPER = 0;
midFrequency = 2440e6;
if strcmp(awnFrequencyHopping,"On")
 errorsBasic = deal(zeros(numBTChannels,3));
 errorsBasic(:,1) = (0:numBTChannels-1);
end

% Number of interfering nodes that collide with AWN
collisionCount = 0;
for index = 1:iwnConfig.NumIWNNodes
 collisionCount = collisionCount + (iwn(index).CollisionProbability > 0);
end

if strcmp(awnFrequencyHopping,"On") && collisionCount ~= 0
 sinr = zeros(numPackets,1);
end

% Loop to simulate multiple packets
for inum = 1:numPackets

 % Generate AWN waveform
 if any(strcmp(awnSignalType,["LE1M","LE2M","LE500K","LE125K"]))
 if strcmp(awnFrequencyHopping,"On")
 channelIndex = frequencyHop();
 channelFrequencies = [2404:2:2424 2428:2:2478 2402 2426 2480]*1e6;
 awnFrequency = channelFrequencies(channelIndex+1);
 end
 txBits = randi([0 1],payloadLength*8,1,"int8");
 awnWaveform = bleWaveformGenerator(int8(txBits),Mode=awnSignalType,ChannelIndex=channelIndex, ...
 SamplesPerSymbol=sps,AccessAddress=accessAddBits,DFPacketType=awnPacket);
 else
 if strcmp(awnFrequencyHopping,"On")
 inputClock = inputClock + clockTicks;

 % Frequency hopping
 channelIndex = nextHop(frequencyHop,inputClock)
 awnFrequency = (2402+channelIndex)*1e6;

 % Generate whiten initialization vector from clock
 clockBinary = int2bit(inputClock,28,false).';
 awnWaveformConfig.WhitenInitialization = [clockBinary(2:7)'; 1];
 end
 txBits = randi([0 1],payloadLength*8,1);
 awnWaveform = bluetoothWaveformGenerator(txBits,awnWaveformConfig);
 end

 % Add timing offset
 timingOffset = randsrc(1,1,1:0.1:100);
 timingOffsetWaveform = helperBLEDelaySignal(awnWaveform,timingOffset);

 % Add frequency offset
 freqOffsetImp = randsrc(1,1,-10e3:100:10e3);
 freqOffsetWaveform = helperBLEFrequencyOffset(timingOffsetWaveform,sampleRate,freqOffsetImp);

 % Add DC offset
 dcValue = (5/100)*max(freqOffsetWaveform);
 dcWaveform = freqOffsetWaveform + dcValue;

1 PHY Modeling

1-10

 % Shift the waveform by making 2440 MHz as the mid frequency
 freqOffset = awnFrequency-midFrequency;
 hopWaveform = helperBLEFrequencyOffset(dcWaveform,sampleRate,freqOffset);

 % Scale the waveform as per the transmitter power and path loss
 soiAmplitudeLinear = 10^((awnTxPower-30)/20)/awnPathloss;
 attenAWNWaveform = soiAmplitudeLinear*hopWaveform;

 % Add IWN waveforms to AWN waveform
 addIWN2AWN = addInterference(iwnConfig,attenAWNWaveform,iwnWaveformPL,timingOffset);

 % Frequency shift the waveform by |-freqOffset|
 freqShiftWaveform = helperBLEFrequencyOffset(addIWN2AWN,sampleRate,-freqOffset);

 % Add AWGN
 soiPower = 20*log10(soiAmplitudeLinear);
 noisePower = soiPower - snr;
 splusibyn = 10*log10(var(freqShiftWaveform))-noisePower;
 noisyWaveform = awgn(freqShiftWaveform,splusibyn,"measured");

 % Apply filter
 if rem(length(noisyWaveform),sps)
 remainder = sps-rem(length(noisyWaveform),sps);
 noisyWaveform = [noisyWaveform;zeros(remainder,1)]; %#ok<AGROW>
 end
 delay = floor(length(firdec.Numerator)/(2*decimationFactor));
 noisyWaveformPadded = [noisyWaveform;zeros(delay*decimationFactor,1)];
 filteredWaveform = firdec(noisyWaveformPadded);
 release(firdec)
 filteredWaveform = filteredWaveform(1+delay:end)*sqrt(decimationFactor);

 % Recover the data bits
 if any(strcmp(awnSignalType,["LE1M","LE2M","LE500K","LE125K"]))
 rxCfg.ChannelIndex = channelIndex;
 [rxBits,accAddress] = helperBLEPracticalReceiver(filteredWaveform,rxCfg);
 if isempty(rxBits) || ~isequal(accessAddBits,accAddress)
 pktStatus = [];
 end
 else
 % Get PHY properties
 rxCfg.WhitenInitialization = awnWaveformConfig.WhitenInitialization;
 [rxBits,~,pktStatus]...
 = helperBluetoothPracticalReceiver(filteredWaveform,rxCfg);
 end

Simulation Results

Compute the BER and PER for each packet. If frequency hopping is on,

• Perform channel classification for every numPacketsToClassify based on the PER.
• Compute the SINR for each packet.
• Visualize the Bluetooth BR/EDR or LE waveform with the interference.

 % Compute BER and PER
 lengthTx = length(txBits);
 lengthRx = length(rxBits);
 lengthMinimum = min(lengthTx,lengthRx)-1;

 PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence

1-11

 countPreviousPER = countPER;
 if lengthTx && lengthRx
 vectorBER = errorRate(txBits(1:lengthMinimum),rxBits(1:lengthMinimum));
 currentErrors = vectorBER(2)-numErrors; % Number of errors in current packet
 if currentErrors || (lengthTx ~= lengthRx) % Check if current packet is in error or not
 countPER = countPER+1; % Increment the PER count
 end
 numErrors = vectorBER(2);
 elseif ~isempty(pktStatus)
 countPER = countPER+~pktStatus; % Increment the PER count
 else
 numPktLost = numPktLost+1;
 end

 % Perform frequency hopping
 if strcmp(awnFrequencyHopping,"On")
 chIdx = channelIndex+1;
 if countPreviousPER ~= countPER
 errorsBasic(chIdx,3) = errorsBasic(chIdx,3)+1;
 end

 % Classify the channels
 if any(inum == (1:floor(numPackets/numPacketsToClassify))*numPacketsToClassify)
 channelMap = errorsBasic(:,3)/numPacketsToClassify > thresholdPER;
 if nnz(channelMap) == 0
 continue;
 end
 badChannels = find(channelMap)-1;
 if length(frequencyHop.UsedChannels)-length(badChannels) < minChannels
 errorsBasic(badChannels+1,3) = 0;
 usedChannels = 0:36;
 else
 errorsBasic(badChannels+1,3) = 0;
 usedChannels = setdiff(frequencyHop.UsedChannels,badChannels);
 end
 frequencyHop.UsedChannels = usedChannels;
 end
 end

 % Visualize the spectrum and spectrogram. Compute SINR.
 if strcmp(awnFrequencyHopping,"On") && collisionCount ~= 0
 sinr(inum) = helperBluetoothSINREstimate(snr,awnTxPower,awnFrequency,pathlossdB,iwnConfig,iwnPathloss);
 spectrumAnalyzer(addIWN2AWN)
 elseif (strcmp(awnFrequencyHopping,"Off") && inum < 70) || (strcmp(awnFrequencyHopping,"On") && collisionCount == 0)
 if inum == 1
 sinr = helperBluetoothSINREstimate(snr,awnTxPower,awnFrequency,pathlossdB,iwnConfig,iwnPathloss);
 end
 spectrumAnalyzer(addIWN2AWN)
 end
end

1 PHY Modeling

1-12

% Compute BER and PER
if ~any(strcmp(awnPacket,["ID","NULL","POLL"]))
 if numPackets ~= numPktLost
 per = countPER/(numPackets-numPktLost);
 ber = vectorBER(1);
 fprintf('Mode %s, Simulated for Eb/No = %d dB, Obtained BER: %d, Obtained PER: %d\n',awnSignalType,EbNo,ber,per);
 else
 fprintf('No Bluetooth packets were detected.\n');
 end
else
 if numPackets ~= numPktLost
 per = countPER/(numPackets-numPktLost);
 fprintf('Mode %s, Simulated for Eb/No = %d dB, Obtained PER: %d\n',awnSignalType,EbNo,per);
 else
 fprintf('No Bluetooth packets were detected.\n');
 end
end

Mode LE1M, Simulated for Eb/No = 10 dB, Obtained BER: 4.205257e-04, Obtained PER: 8.980000e-01

This example simulates an end-to-end link for Bluetooth BR/EDR and LE with Bluetooth BR/EDR, LE,
or WLAN waveforms as interference. You can implement AFH to mitigate interference by classifying
channels as good or bad based on the PER value.

 PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence

1-13

Further Exploration

To observe the PER performance with interferer distance, you can run the simulation for different
IWN transmitter positions. This plot shows the impact of interferer distance on PER given:

• Bluetooth LE1M AWN, 10 meters distance between the AWN transmitter and receiver, an AWN
frequency of 2440 MHz, and an Eb/No value of 10 dB.

• 802.11 g with 20 MHz bandwidth IWN, an IWN frequency of 2437 MHz (co-channel interference),
and a collision probability of 1.

To observe the PER performance with interferer channel separation, you can run the simulation for
different IWN frequencies (when frequency hopping is off). This plot shows the impact of interferer
channel separation on PER given:

• Bluetooth LE1M AWN, 10 m distance between the AWN transmitter and receiver, and an Eb/No
value of 10 dB.

• 802.11g with 20 MHz bandwidth IWN, an IWN frequency of 2437 MHz, a collision probability of 1,
and 10 m distance between the AWN and IWN transmitters.

1 PHY Modeling

1-14

To observe the PER performance with collision probability, you can run the simulation for different
collision probabilities. This plot shows the impact of collision probability on PER by considering:

• Bluetooth LE1M AWN, an AWN frequency of 2440 MHz, 10 m between the AWN transmitter and
receiver, and an Eb/No value of 10 dB.

• 802.11g with 20 MHz bandwidth IWN, an IWN frequency of 2437 MHz, and 10 m between the
AWN and IWN transmitters.

 PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence

1-15

Appendix

The example uses these helper functions:

• helperIWNConfig: Interference wireless node configuration parameters
• helperBLEDelaySignal: Introduce time delay in the signal
• helperBLEFrequencyOffset: Apply frequency offset to the input signal
• helperBLEPracticalReceiver: Demodulate and decode the received signal
• helperBluetoothPracticalReceiver: Detect, synchronize, and decode the received Bluetooth

BR/EDR waveform
• helperBluetoothEstimatePathLoss: Estimate the path loss between the node and locator
• helperBluetoothSINREstimate: Estimate SINR

Selected Bibliography

1 Bluetooth Technology Website. “Bluetooth Technology Website | The Official Website of Bluetooth
Technology.” Accessed November 15, 2021. https://www.bluetooth.com.

1 PHY Modeling

1-16

https://www.bluetooth.com

2 Bluetooth Special Interest Group (SIG). "Core System Package [Low Energy Controller Volume]".
Bluetooth Core Specification. Version 5.3, Volume https://www.bluetooth.com.

See Also

Related Examples
• “Noncollaborative Bluetooth LE Coexistence with WLAN Signal Interference” on page 7-21

 PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence

1-17

https://www.bluetooth.com

802.11be Waveform Generation

This example shows how to parameterize and generate IEEE® 802.11be™ extremely high throughput
(EHT) multi-user waveforms.

Introduction

802.11be

The physical layer of 802.11be (Wi-Fi 7) [1 on page 1-47] is an extension of 802.11ax (Wi-Fi 6) [2 on
page 1-47], focusing on WLAN indoor and outdoor operation with a maximum throughput of 30
Gbps [1 on page 1-47]. EHT devices coexist with legacy 802.11-compliant devices operating in the
2.4 GHz, 5 GHz, and 6 GHz unlicensed spectra. The standard introduces these key new features in
the EHT format [1 on page 1-47].

• 320 MHz channel bandwidth
• Multiple Resource Units (MRUs) per stations (STAs)
• 4096-QAM
• Non-OFDMA preamble puncturing

IEEE P802.11be/D2.0 [1 on page 1-47] specifies two packet formats.

• EHT multi-user (EHT MU)
• EHT trigger-based (EHT TB)

The EHT MU packet can be configured for OFDMA transmission, non-OFDMA transmission, or a
combination of the two. With this flexibility, an EHT MU packet can transmit to a single user over the
whole band, multiple users over different parts of the band (OFDMA), or multiple users over the same
part of the band (MU-MIMO). This example shows how to generate an EHT MU packet for each of
these different waveforms and demonstrates some of the key features of the draft standard [1 on
page 1-47].

The EHT TB packet allows for OFDMA or MU-MIMO transmission in the uplink. The access point (AP)
controls EHT TB transmissions. A trigger frame sent to all STAs participating in the transmission
contains all the parameters required for the transmission. Each STA transmits an EHT TB packet
simultaneously when triggered by the AP. This example shows how to generate an EHT TB
transmission in response to a trigger frame for four users in an OFDMA/MU-MIMO transmission.

Subcarriers and Resource Allocation

As in HE transmissions, the channel bandwidth of an EHT transmission is divided into RUs. An RU is
a group of subcarriers assigned to one or more users. An RU is defined by the size (the number of
subcarriers) and an index. The RU index specifies the location of the RU within the channel. For
example, an 80 MHz transmission contains four possible 242-tone RUs, one in each 20 MHz
subchannel. RU# 242-1 (size 242, index 1) is the RU occupying the lowest absolute frequency within
the 80 MHz, and RU# 242-4 (size 242, index 4) is the RU occupying the highest absolute frequency.
The draft standard defines possible sizes and locations of RUs in section 36.3.2 of [1 on page 1-47].

In EHT, the RU sizes in tones are 26, 52, 106, 242, 484, 996, 2x996, or 4x996, where 242, 484, 996,
2x996, and 4x996 correspond to the entire 20 MHz, 40 MHz, 80 MHz, 160 MHz, and 320 MHz
channel bandwidth, respectively. An EHT AP can assign 26-, 52-, or 106-tone RUs to a single user, or

1 PHY Modeling

1-18

242-, 484-, 996-, 2x996-, or 4x996-tone RUs to a single user or multiple users in MU-MIMO
configuration.

Unlike in HE, more than one RU can be assigned to a STA. RUs can be aggregated to form an MRU.
RUs are classified as small-size RUs or large-size RUs.

Small-size RUs are 26-, 52-, and 106-tone RUs. Small-size RUs can only be combined with other small-
size RUs to form a small-size MRU. Small-size MRUs are used for both uplink and downlink
transmission in OFDMA format. These combinations of small-size MRUs can be assigned to a single
STA:

• 52+26-tone MRU
• 106+26-tone MRU

Large-size RUs are 242-, 484-, 996-, 2x996-, and 4x996-tone RUs. Large-size RUs can only be
combined with other large-size RUs to form a large-size MRU. The large-size MRUs are defined for
both uplink and downlink transmission in non-OFDMA and OFDMA format. These combinations of
large-size MRUs can be assigned to a STA as defined in section 36.3.2.2.3 of [1 on page 1-47]:

• 484+242-tone MRU
• 996+484-tone MRU
• 996+484+242-tone MRU (can only be assigned to non-OFDMA STAs)
• 2x996+484-tone MRU
• 3x996-tone MRU (2x996 + 996 tones)
• 3x996+484-tone MRU (2x996 + 996 + 484 tones)

The index and size of an MRU is the combined indices and sizes of the RUs that form it. For example,
take a 20 MHz transmission that contains a 106+26-tone RU and a 106-tone RU. RU# 106+26 (size
106 and 26, index 1 and 5) is an MRU occupying the lowest absolute frequency within the 20 MHz,
and RU# 106 (size 106, index 2) is the RU occupying the highest absolute frequency. The draft
standard defines possible sizes and locations of RUs in section 36.3.2 of [1 on page 1-47]. See also
Appendix A on page 1-43.

EHT Multi-User (EHT MU) Non-OFDMA Packet Format

A full-band non-OFDMA packet is an EHT MU packet that contains the transmission of a single user
or multiple users in an MU-MIMO configuration over the full channel bandwidth.

Single-User Packet Generation

An EHT MU single-user (SU) packet is a full-band, non-OFDMA transmission to a single user. Use
EHT MU configuration object wlanEHTMUConfig to configure the transmission parameters of a full-
band EHT MU packet for a single user. Create a full-band 320 MHz single-user MIMO configuration
and set the transmission parameters of the user.

cfgSU = wlanEHTMUConfig('CBW320');
numTx = 2; % Number of transmit antennas
cfgSU.NumTransmitAntennas = numTx;
cfgSU.User{1}.APEPLength = 8000; % A-MPDU length pre-EOF padding, in bytes
cfgSU.User{1}.MCS = 12; % Modulation and coding scheme
cfgSU.User{1}.NumSpaceTimeStreams = numTx;

Get the required PSDU length for the specified transmission configuration and create a random PSDU
of this length for transmission.

 802.11be Waveform Generation

1-19

psdu = randi([0 1],psduLength(cfgSU)*8,1,'int8');

Generate the EHT MU single-user packet by using the wlanWaveformGenerator function.

tx = wlanWaveformGenerator(psdu,cfgSU); %#ok<*NASGU> % Create packet

MU-MIMO Packet Generation

Configure transmission parameters for a full-band non-OFDMA EHT MU packet for multiple users by
using the EHT MU configuration object. Use the NumUsers property of wlanEHTMUConfig object to
specify the number of users in an MU-MIMO configuration.

Create a 20 MHz (MU-MIMO) EHT MU configuration for two users and set parameters common to all
users.

numTx = 2;
% Set common transmission parameters for all users
cfgMUMIMO = wlanEHTMUConfig('CBW20','NumUsers',2);
cfgMUMIMO.NumTransmitAntennas = numTx;
cfgMUMIMO.GuardInterval = 3.2;
cfgMUMIMO.EHTLTFType = 4;

The ruInfo object function provides details of the RUs in the configuration. In this case a single RU
contains two users.

allocInfo = ruInfo(cfgMUMIMO);
disp('Allocation info:')

Allocation info:

disp(allocInfo)

 NumUsers: 2
 NumRUs: 1
 RUIndices: {[1]}
 RUSizes: {[242]}
 NumUsersPerRU: 2
 NumSpaceTimeStreamsPerRU: 2
 PowerBoostFactorPerRU: 1
 RUNumbers: 1

The properties of cfgMUMIMO describe the transmission configuration. The cfgMUMIMO.RU and
cfgMUMIMO.User properties of cfgMUMIMO are cell arrays. Each element of the cell arrays contains
an object which configures an RU or a user. When you create the cfgMUMIMO object, the elements of
cfgMUMIMO.RU and cfgMUMIMO.User create the desired number of RUs and users. Each element of
cfgMUMIMO.RU is a wlanEHTRU object describing the configuration of an RU. Similarly, each element
of cfgMU.User is a wlanEHTUser object describing the configuration of a user. This figure shows
the object hierarchy.

1 PHY Modeling

1-20

This example creates a single RU in non-OFDMA format for a channel bandwidth of 20 MHz, so
cfgMUMIMO.RU is a cell array with one element. The index and size of each RU are configured
according to the channel bandwidth specified when cfgMUMIMO was created.

disp('RU configuration:')

RU configuration:

disp(cfgMUMIMO.RU{1})

 wlanEHTRU with properties:

 PowerBoostFactor: 1
 SpatialMapping: direct

 Read-only properties:
 Size: 242
 Index: 1
 UserNumbers: [1 2]

After creating the object, you can configure each RU to create the desired transmission configuration
by setting the properties of the appropriate RU object. For example, the spatial mapping and power
boost factor can be configured per RU.

Create a random spatial mapping array and configure RU index 1.

ruIndex = 1;
ofdmInfo = wlanEHTOFDMInfo('EHT-Data',cfgMUMIMO,ruIndex);
numST = ofdmInfo.NumTones; % Number of occupied subcarriers
numSTS = allocInfo.NumSpaceTimeStreamsPerRU(ruIndex);

 802.11be Waveform Generation

1-21

cfgMUMIMO.RU{ruIndex}.SpatialMapping = 'Custom';
cfgMUMIMO.RU{ruIndex}.SpatialMappingMatrix = rand(numST,numSTS,numTx);

In this section, the NumUsers property specifies two users in the transmission, so cfgMUMIMO.User
contains two elements. The transmission properties of users can be configured by modifying
individual user objects, for example the modulation and coding scheme (MCS), APEP length, and
channel coding scheme.

Set transmission properties of user 1.

cfgMUMIMO.User{1}.APEPLength = 500; % A-MPDU length pre-EOF padding in bytes
cfgMUMIMO.User{1}.MCS = 12;
cfgMUMIMO.User{1}.ChannelCoding = 'LDPC';
cfgMUMIMO.User{1}.NumSpaceTimeStreams = 1;

Set transmission properties of user 2.

cfgMUMIMO.User{2}.APEPLength = 700; % A-MPDU length pre-EOF padding in bytes
cfgMUMIMO.User{2}.MCS = 7;
cfgMUMIMO.User{2}.ChannelCoding = 'BCC';
cfgMUMIMO.User{2}.NumSpaceTimeStreams = 1;

The read-only RUNumber property indicates which RU is used to transmit this user.

disp('First user configuration:')

First user configuration:

disp(cfgMUMIMO.User{1})

 wlanEHTUser with properties:

 APEPLength: 500
 MCS: 12
 NumSpaceTimeStreams: 1
 ChannelCoding: ldpc
 STAID: 0
 NominalPacketPadding: 0
 PostFECPaddingSource: mt19937arwithseed
 PostFECPaddingSeed: 1

 Read-only properties:
 RUNumber: 1

In this example the non-OFDMA configuration consists of a single RU and two users. The
UserNumbers property of an RU object indicates which users (elements of the cfgMUMIMO.User cell
array) are transmitted on that RU. Similarly, the RUNumber property of each User object indicates
which RU (element of the cfgMUMIMO.RU cell array) is used to transmit the user. For more
information, see the “802.11ax Waveform Generation” on page 1-64 example.

1 PHY Modeling

1-22

The showAllocation object function visualizes the occupied RUs or MRUs and subcarriers for the
specified configuration. The colored blocks illustrate the occupied subcarriers in the pre-EHT and
EHT portions of the packet. White indicates unoccupied subcarriers. The pre-EHT portion illustrates
the occupied subcarriers in the fields preceding the EHT-STF. The EHT portion illustrates the
occupied subcarriers in the EHT-STF, EHT-LTF, and EHT-Data field and therefore shows the RU/MRU
allocation. To display information about an RU or MRU, click on the RU or MRU. The RU number
corresponds to the ith RU element of the cfgMUMIMO.RU property. The showAllocation object
function also shows the size of each RU or MRU, and the users assigned to each. The user number
corresponds to the ith User element of the cfgMUMIMO.

showAllocation(cfgMUMIMO);

 802.11be Waveform Generation

1-23

To generate a non-OFDMA EHT MU waveform, create a random PSDU for each user. Use a cell array
to store the PSDU for each user as the PSDU lengths differ. The psduLength object function returns
a vector with the required PSDU per user for the specified configuration.

psduLen = psduLength(cfgMUMIMO);
psdu = cell(1,allocInfo.NumUsers);
for i = 1:allocInfo.NumUsers
 psdu{i} = randi([0 1],psduLen(i)*8,1,'int8');
end

Generate a 20 MHz non-OFDMA (MU-MIMO) packet with two users.

tx = wlanWaveformGenerator(psdu,cfgMUMIMO);

EHT DUP Mode Packet Generation

An EHT DUP mode transmission is a non-OFDMA transmission to a single user where the data
payload is duplicated in frequency. EHT DUP mode is only applicable for 80 MHz, 160 MHz, and 320
MHz transmissions. Configure the transmission of an EHT DUP using the EHT MU configuration
object by setting the EHTDUPMode property of wlanEHTMUConfig to true. Create a 320 MHz EHT
DUP mode configuration and set the transmission parameters of the user. Note the MCS of the user is
automatically set to 14.

cfgDUPMode = wlanEHTMUConfig('CBW320','EHTDUPMode',true);
cfgDUPMode.User{1}.APEPLength = 200;
disp(cfgDUPMode.User{1}.MCS)

 14

1 PHY Modeling

1-24

Get the required PSDU length for the specified transmission configuration and create a random PSDU
of this length for transmission.

psdu = randi([0 1],psduLength(cfgDUPMode)*8,1,'int8');

Generate the EHT DUP mode packet by using the wlanWaveformGenerator function.

tx = wlanWaveformGenerator(psdu,cfgDUPMode); %#ok<*NASGU> % Create packet

Punctured Packet Generation with Large MRUs

The draft standard allows for punctured 20 MHz subchannels in a non-OFDMA or OFDMA 80 MHz,
160 MHz, or 320 MHz transmission to allow a legacy system to operate in the punctured subchannel.
The preamble portion of the punctured 20 MHz subchannel is not transmitted and the corresponding
RU is not allocated to any user (no data transmitted). This method is also described as channel
bonding.

In a non-OFDMA format, large-size MRUs are obtained by puncturing any one of the 242-, 484-, or
996-tone RUs within an 80 MHz, 160 MHz, or 320 MHz channel bandwidth. As an example, a
996+484+242-tone MRU is obtained by puncturing any one of eight 242-tone RUs in the 160 MHz
channel, see section 36.3.12.11.3 of [1 on page 1-47]. The preamble is not transmitted in the
punctured subchannel within a large MRU and the corresponding RU is not allocated to any user. The
non-OFDMA packet format supports single-user and MU-MIMO packet transmission in large MRUs.
The EHT-USIG field of an EHT MU packet carries the punctured sub-channel indication for a non-
OFDMA transmission.

Use the EHT MU configuration object to configure the non-OFDMA transmission properties of an
EHT MU packet transmission on a large MRU. Appendix B on page 1-45 lists possible puncturing
patterns for 80 MHz, 160 MHz, and 320 MHz channel bandwidths and the corresponding value of the
PuncturedChannelFieldValue property when creating the wlanEHTMUConfig object.

Create a configuration for a 160 MHz EHT MU packet transmission on a large 996+484+242-tone
MRU. Puncture the second 20 MHz subchannel in a 160 MHz channel as shown in Appendix B on
page 1-45 by setting the PuncturedChannelFieldValue property to 2.

cfgPunc = wlanEHTMUConfig('CBW160','PuncturedChannelFieldValue',2);
tx = wlanWaveformGenerator([1 0 1 0],cfgPunc);

View the punctured RU allocation.

showAllocation(cfgPunc);

 802.11be Waveform Generation

1-25

Create a configuration for two users in MU-MIMO configuration in a 320 MHz channel. The EHT MU
packet transmission is on a large 3x996+484-tone MRU, see section 36.3.2.2.3 of [1 on page 1-47].
Create the wlanEHTMUConfig object, setting the PuncturedChannelFieldValue property to 3 to
puncture the third 40 MHz subchannel in a 320 MHz channel as shown in Appendix B on page 1-45.

cfg = wlanEHTMUConfig('CBW320','NumUsers',2,'PuncturedChannelFieldValue',3);
cfg.NumTransmitAntennas = 8;

Set transmission properties of user 1.

cfg.User{1}.NumSpaceTimeStreams = 4;
cfg.User{1}.APEPLength = 500000;
cfg.User{1}.MCS = 12;

Set transmission properties of user 2.

cfg.User{2}.NumSpaceTimeStreams = 4;
cfg.User{2}.APEPLength = 400000;
cfg.User{2}.MCS = 13;

View the punctured RU allocation.

showAllocation(cfg);

1 PHY Modeling

1-26

Create a random PSDU for each user. Use a cell array to store the PSDU for each user as the PSDU
lengths differ. The psduLength object function returns a vector with the required PSDU per user for
the specified configuration.

psduLen = psduLength(cfg);
allocInfo = ruInfo(cfg); % Get allocation information
psdu = cell(1,allocInfo.NumUsers);
for i=1:allocInfo.NumUsers
 psdu{i} = randi([0 1],psduLen(i)*8,1);
end

Create an oversampled waveform using the wlanWaveformGenerator function. This function
generates an oversampled waveform by using a larger inverse fast Fourier transform (IFFT) size than
required for the nominal baseband rate.

osf = 1.5;
tx = wlanWaveformGenerator(psdu,cfg,'OversamplingFactor',osf);

Generate the spectrum and spectrogram of the generated signal. The spectrogram shows the
punctured 40 MHz subchannel in the 320 MHz channel.

sa = plotSpectrumAndSpectrogram(tx,cfg,osf,'3x996+484-tone MRU with punctured 40 MHz subchannel in 320 MHz channel');

 802.11be Waveform Generation

1-27

EHT Multi-User (EHT MU) OFDMA Packet Format

The allocation index defines the assignment of RUs/MRUs in an OFDMA transmission. Appendix A on
page 1-43 lists the allocation indices for all RU/MRU assignments. For each 20 MHz subchannel, a
9-bit index describes the number and size of RUs/MRUs and the number of users transmitted on each
RU/MRU. The length of allocation Index must be 1, 2, 4, 8, or 16 to define the assignment for each 20
MHz subchannel in a 20 MHz, 40 MHz, 80 MHz, 160 MHz, or 320 MHz channel bandwidth,
respectively. The allocation index also determines which content channel the EHT-SIG field uses to
signal a user.

Small MRU Packet Generation

Configure transmission parameters for an EHT MU packet format in a OFDMA configuration with an
EHT MU configuration object. Create an OFDMA configuration for a 20 MHz EHT MU packet with
two 52-tone RUs, one 106+26-tone MRU, and one user per RU, as defined by allocation index 47.

cfgOFDMA = wlanEHTMUConfig(47);

Visualize the RU allocation with the showAllocation object function.

showAllocation(cfgOFDMA)

1 PHY Modeling

1-28

The ruInfo object function provides details of the RUs in the configuration. You can see three RUs
with a user in each RU.

allocInfo = ruInfo(cfgOFDMA);
disp('Allocation info:')

Allocation info:

disp(allocInfo)

 NumUsers: 3
 NumRUs: 3
 RUIndices: {[1 5] [3] [4]}
 RUSizes: {[106 26] [52] [52]}
 NumUsersPerRU: [1 1 1]
 NumSpaceTimeStreamsPerRU: [1 1 1]
 PowerBoostFactorPerRU: [1 1 1]
 RUNumbers: [1 2 3]

Set common transmission parameters for all users.

numTx = 3;
cfgOFDMA.NumTransmitAntennas = numTx;
cfgOFDMA.EHTLTFType = 2;
cfgOFDMA.GuardInterval = 1.6

cfgOFDMA =
 wlanEHTMUConfig with properties:

 802.11be Waveform Generation

1-29

 RU: {[1x1 wlanEHTRU] [1x1 wlanEHTRU] [1x1 wlanEHTRU]}
 User: {[1x1 wlanEHTUser] [1x1 wlanEHTUser] [1x1 wlanEHTUser]}
 NumTransmitAntennas: 3
 GuardInterval: 1.6000
 EHTLTFType: 2
 NumExtraEHTLTFSymbols: 0
 EHTSIGMCS: 0
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: []

 Read-only properties:
 ChannelBandwidth: 'CBW20'
 AllocationIndex: 47

Configure RU 1 and user 1.

cfgOFDMA.RU{1}.SpatialMapping = 'Direct';
cfgOFDMA.User{1}.APEPLength = 1e3;
cfgOFDMA.User{1}.MCS = 12;
cfgOFDMA.User{1}.NumSpaceTimeStreams = numTx;
cfgOFDMA.User{1}.ChannelCoding = 'LDPC';

Configure RU 2 and user 2.

cfgOFDMA.RU{2}.SpatialMapping = 'Fourier';
cfgOFDMA.User{2}.APEPLength = 500;
cfgOFDMA.User{2}.MCS = 5;
cfgOFDMA.User{2}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{2}.ChannelCoding = 'LDPC';

Configure RU 3 and user 3.

cfgOFDMA.RU{3}.SpatialMapping = 'Fourier';
cfgOFDMA.User{3}.APEPLength = 100;
cfgOFDMA.User{3}.MCS = 4;
cfgOFDMA.User{3}.NumSpaceTimeStreams = 1;
cfgOFDMA.User{3}.ChannelCoding = 'BCC';

Allocation index 47 specifies three RUs and three users, therefore cfgOFDMA.RU and
cfgOFDMA.User are both cell arrays with three elements. This figure shows the object hierarchy.

1 PHY Modeling

1-30

The Size and Index properties of cfgOFDMA.RU{1} show the size and index of the RUs making up
the 106+26-tone MRU.

disp('First RU configuration:')

First RU configuration:

disp(cfgOFDMA.RU{1})

 wlanEHTRU with properties:

 PowerBoostFactor: 1
 SpatialMapping: direct

 Read-only properties:
 Size: [106 26]
 Index: [1 5]
 UserNumbers: 1

Configure the transmission properties of users by modifying individual user object properties. The
read-only RUNumber property indicates which RU is used to transmit this user.

disp('First user configuration:')

First user configuration:

disp(cfgOFDMA.User{1})

 802.11be Waveform Generation

1-31

 wlanEHTUser with properties:

 APEPLength: 1000
 MCS: 12
 NumSpaceTimeStreams: 3
 ChannelCoding: ldpc
 STAID: 0
 NominalPacketPadding: 0
 PostFECPaddingSource: mt19937arwithseed
 PostFECPaddingSeed: 1

 Read-only properties:
 RUNumber: 1

The UserNumbers property of an RU object indicates which users (elements of the cfgOFDMA.User
cell array) are transmitted on that RU. Similarly, the RUNumber property of each User object,
indicates which RU (element of the cfgMUMIMO.RU cell array) is used to transmit the user. For more
information see the “802.11ax Waveform Generation” on page 1-64 example.

To generate an EHT MU waveform, create a random PSDU for each user. Store the PSDU for each
user in a cell array as the PSDU lengths differ. The psduLength object function returns a vector with
the required PSDU per user given the configuration.

psduLen = psduLength(cfgOFDMA);
psdu = cell(1,allocInfo.NumUsers);
for i=1:allocInfo.NumUsers
 psdu{i} = randi([0 1],psduLen(i)*8,1);
end

Generate the waveform.

tx = wlanWaveformGenerator(psdu,cfgOFDMA);

1 PHY Modeling

1-32

Large MRU Packet Generation

An EHT MU transmission with a channel bandwidth greater than 20 MHz uses two content channels
to signal the common and user configuration information. These content channels are duplicated over
each 40 MHz subchannel within an 80 MHz segment. When an OFDMA system contains an RU with
size greater than 242, the users assigned to the RU can be signaled on either of the two EHT SIG
content channels as defined in section 36.3.12.8 of [1 on page 1-47].

As an example, consider this 160 MHz configuration, which serves ten users with three RUs including
a 996-[]-484 MRU:

• A large 996+484-tone MRU (RU #1) with eight users (user #1-8)
• A 242-tone RU (RU #2) with one user (user #9)
• A 242-tone RU (RU #3) with one user (user #10)

Configure a 160 MHz OFDMA transmission with eight allocation indices, one for each 20 MHz
subchannel. To configure the example scenario, use these allocation indices.

[X1 X2 X3 X4 64 64 X5 X6]

• X1 to X6 configure the 996+484-tone MRU, with users #1-8.
• Allocation index 64 configures a 242-tone RU with one user.

The selection of X1 to X6 configures the appropriate number of users through an allocation index in
the 20 MHz subchannel and determines which EHT-SIG content channel signals the users on the
996+484-tone RU. A 996+484-tone RU spans six 20 MHz subchannels. The two 242-tone RUs each
indicated by allocation index 64 span two 20 MHz subchannels within MRU 996-[]-484. The
996+484-tone MRU requires six allocation indices indicated by X1 to X6. The ten users can be
signaled on two EHT-SIG content channels in different combinations. Table 1 shows seven of the
numerous possible combinations.

An allocation index within the range 144-151 specifies 1-8 users on a 996+484-tone MRU. To signal
no users on a content channel, use allocation index 29 or 30 when the 20 MHz subchannel

 802.11be Waveform Generation

1-33

corresponding to the index overlaps with a 448-tone or 996-tone RU, respectively. Therefore, the
combinations in Table 1 require eight allocation indices as shown in Table 2. Other than allocation
index 64, the remaining six allocation indices in each row of Table 2 are X1 to X6. Table 2 shows the
number of users on each content channel in the two 80 MHz segments for various combinations of
RU allocation index.

To configure 'Combination C', use the allocation indices [145 145 145 145 64 64 29 29].

Configure the transmission parameters for an EHT MU packet format for the OFDMA configuration
with an EHT MU configuration object.

cfgLMRU = wlanEHTMUConfig([145 145 145 145 64 64 29 29]); % 1 MRU (996+484) with 8 users and two 242-tone RUs with one user each
cfgLMRU.NumTransmitAntennas = 8;

Set transmission parameters of the users.

userSTS = [1 1 1 1 1 1 1 1 8 8]; % Number of space time streams per user
allocInfo = ruInfo(cfgLMRU); % Get details of the RU/MRU in the configuration
for u=1:allocInfo.NumUsers
 cfgLMRU.User{u}.NumSpaceTimeStreams = userSTS(u);
 cfgLMRU.User{u}.MCS = 12;
 cfgLMRU.User{u}.APEPLength = randi([100 500],1,1);
end

Create packet with a repeated bit sequence as the PSDU.

tx = wlanWaveformGenerator([1 0 1 0],cfgLMRU);

Visualize the RU allocation.

showAllocation(cfgLMRU)

1 PHY Modeling

1-34

Preamble Puncturing

Create a configuration for an OFDMA 160 MHz transmission with punctured subchannels. Use the 20
MHz subchannel allocation index 26 to puncture a 20 MHz subchannel. Puncture the second 20 MHz
subchannel in the lower 80 MHz segment. Puncture the second and third 20 MHz subchannels in the
upper 80 MHz segment.

cfgPuncture = wlanEHTMUConfig([64 26 64 64 64 26 26 64]);
for u=1:numel(cfgPuncture.User)
 cfgPuncture.User{u}.APEPLength = 1000;
end

Generate on oversampled waveform using a larger IFFT size than required for the nominal baseband
rate.

osf = 1.5;
txPuncture = wlanWaveformGenerator([1 0 1 0],cfgPuncture,'OversamplingFactor',osf);

View the punctured 20 MHz subchannels in the generated waveform by using the spectrum analyzer.

sa = plotSpectrumAndSpectrogram(txPuncture,cfgPuncture,osf,'160 MHz EHT MU Transmission with Punctured 20 MHz Channels');

 802.11be Waveform Generation

1-35

Unassigned RUs

The draft standard allows for RUs to be unassigned (no data transmitted) without the preamble
portion of the corresponding 20 MHz being punctured. The standard specifies two methods for
creating unassigned RUs: using an unassigned 242-tone allocation index, or signaling a user with
STA-ID 2046.

Unassigned 242-tone Allocation Index

Configure a 160 MHz transmission with no data transmission in a 20 MHz subchannel without
preamble puncturing by using allocation index 27.

cfgUnassigned = wlanEHTMUConfig([64 27 64 64]);
for u=1:numel(cfgUnassigned.User)
 cfgUnassigned.User{u}.APEPLength = 1000;
end

Visualize the RU allocation, which shows that the preamble is not punctured.

showAllocation(cfgUnassigned);

1 PHY Modeling

1-36

Generate an oversampled waveform and view the spectrogram. The preamble is visible in all 20 MHz
subchannels at the start of the waveform.

osf = 1.5;
tx = wlanWaveformGenerator([1 0 0 1],cfgUnassigned,'OversamplingFactor',osf);
sa = plotSpectrumAndSpectrogram(tx,cfgUnassigned,osf,'160 MHz EHT MU Transmission with Unassigned 20 MHz Channel');

 802.11be Waveform Generation

1-37

Signal User with STA-ID 2046

The draft standard states an RU is unassigned (no data transmitted) if the STA-ID of the EHT-SIG
User field is 2046.

Create a 20 MHz OFDMA configuration with four RUs with a user in each RU using allocation index
52

cfgUnassigned = wlanEHTMUConfig(52);

Visualize the RU allocation.

showAllocation(cfgUnassigned)

1 PHY Modeling

1-38

Set the STAID property of the third user to 2046 so the 52+26-tone MRU is unassigned.

cfgUnassigned.User{3}.STAID = 2046; % No data transmitted to 3rd user on MRU 52+26

Visualize the RU allocation, which shows that the third RU is now unassigned but the preamble is not
punctured.

showAllocation(cfgUnassigned)

 802.11be Waveform Generation

1-39

View details of the active RUs in the configuration by using the ruInfo object function. This shows
three users and three RUs as one user and RU is unassigned.

allocInfo = ruInfo(cfgUnassigned);
disp('Allocation info:')

Allocation info:

disp(allocInfo)

 NumUsers: 4
 NumRUs: 3
 RUIndices: {[1] [5] [9]}
 RUSizes: {[106] [26] [26]}
 NumUsersPerRU: [1 1 1]
 NumSpaceTimeStreamsPerRU: [1 1 1]
 PowerBoostFactorPerRU: [1 1 1]
 RUNumbers: [1 2 4]

EHT Trigger-Based (EHT TB) Packet Format

The EHT trigger-based (TB) format allows for OFDMA or MU-MIMO transmission in the uplink. Each
station (STA) transmits a TB packet simultaneously, when triggered by the access point (AP). An AP
controls the TB transmission and provides the parameters to all STAs participating in the TB
transmission through a trigger frame. This example shows a TB transmission in response to a trigger
frame for four users in an OFDMA/MU-MIMO system. All four STAs will transmit simultaneously to an
AP.

1 PHY Modeling

1-40

The 80 MHz allocation range 104 to 111 corresponds to a large size MRU in a OFDMA/MU-MIMO
configuration. As an example, the allocation 104 and 50 corresponds to three RU/MRUs, where:

• A 242-[]-484-tone large size MRU (RU #1) has two users (user #1-2)
• A 106-tone RU (RU #2) has one user (user #3)
• A 106+26-tone small size MRU (RU #3) has one user (user #4)

Use a wlanEHTMUConfig object to obtain the allocation information.

% Generate an OFDMA/MU-MIMO allocation
cfgMU = wlanEHTMUConfig([104 50 104 29]);
allocationInfo = ruInfo(cfgMU);

In a TB transmission several parameters are the same for all users in the transmission. Some of these
are specified below:

% These parameters are the same for all users in a TB transmission
channelBandwidth = cfgMU.ChannelBandwidth; % Bandwidth of TB waveform
lsigLength = 286; % L-SIG length
preFECPaddingFactor = 1; % Pre-FEC padding factor
numEHTLTFSymbols = 2; % Number of EHT-LTF symbols
ldpcExtraSymbol = true; % LDPC extra symbol

Use a wlanEHTTBConfig object to configure a TB transmission for a single user within the system.
In this example, an array of four objects is created to describe the transmission of four users.

% Create a trigger configuration for each user
numUsers = allocationInfo.NumUsers;
cfgTriggerUser = repmat(wlanEHTTBConfig,1,numUsers);

The non-default system-wide properties are set for each user.

for userIdx = 1:numUsers
 cfgTriggerUser(userIdx).ChannelBandwidth = channelBandwidth;
 cfgTriggerUser(userIdx).LSIGLength = lsigLength;
 cfgTriggerUser(userIdx).PreFECPaddingFactor = preFECPaddingFactor;
 cfgTriggerUser(userIdx).NumEHTLTFSymbols = numEHTLTFSymbols;
end

Next set the per-user properties. When multiple users are transmitting in the same RU, in an MU-
MIMO configuration, each user must transmit on different space-time stream indices. Set properties
StartingSpaceTimeStream and NumSpaceTimeStreamSteams for each user. In this example user
1 and 2 are in an MU-MIMO configuration, therefore StartingSpaceTimeStream for user two is
set to 2, as user one transmit on a single space-time stream with StartingSpaceTimeStream = 1.

% These parameters are for the first user - Large MRU, MU-MIMO user 1
cfgTriggerUser(1).RUSize = allocationInfo.RUSizes{1};
cfgTriggerUser(1).RUIndex = allocationInfo.RUIndices{1};
cfgTriggerUser(1).MCS = 4; % Modulation and coding scheme
cfgTriggerUser(1).NumTransmitAntennas = 2; % Number of transmit antennas
cfgTriggerUser(1).NumSpaceTimeStreams = 1; % Number of space-time streams
cfgTriggerUser(1).StartingSpaceTimeStream = 1; % The starting index of the space-time streams
cfgTriggerUser(1).ChannelCoding = 'ldpc'; % Channel coding
cfgTriggerUser(1).LDPCExtraSymbol = ldpcExtraSymbol; % LDPC extra symbols
cfgTriggerUser(1).SpatialMapping = 'fourier'; % Spatial mapping

% These parameters are for the second user - Large MRU, MU-MIMO user 2

 802.11be Waveform Generation

1-41

cfgTriggerUser(2).RUSize = allocationInfo.RUSizes{1};
cfgTriggerUser(2).RUIndex = allocationInfo.RUIndices{1};
cfgTriggerUser(2).MCS = 2; % Modulation and coding scheme
cfgTriggerUser(2).NumTransmitAntennas = 2; % Number of transmit antennas
cfgTriggerUser(2).NumSpaceTimeStreams = 1; % Number of space-time streams
cfgTriggerUser(2).StartingSpaceTimeStream = 2; % The starting index of the space-time streams
cfgTriggerUser(2).ChannelCoding = 'ldpc'; % Channel coding
cfgTriggerUser(2).LDPCExtraSymbol = ldpcExtraSymbol; % LDPC extra symbols
cfgTriggerUser(2).SpatialMapping = 'fourier'; % Spatial mapping

% These parameters are for the third user - RU#2
cfgTriggerUser(3).RUSize = allocationInfo.RUSizes{2};
cfgTriggerUser(3).RUIndex = allocationInfo.RUIndices{2};
cfgTriggerUser(3).MCS = 3; % Modulation and coding scheme
cfgTriggerUser(3).NumTransmitAntennas = 2; % Number of transmit antennas
cfgTriggerUser(3).NumSpaceTimeStreams = 1; % Number of space-time streams
cfgTriggerUser(3).ChannelCoding = 'bcc'; % Channel coding
cfgTriggerUser(3).SpatialMapping = 'fourier'; % Spatial mapping

% These parameters are for the fourth user - Small MRU
cfgTriggerUser(4).RUSize = allocationInfo.RUSizes{3};
cfgTriggerUser(4).RUIndex = allocationInfo.RUIndices{3};
cfgTriggerUser(4).MCS = 1; % Modulation and coding scheme
cfgTriggerUser(4).NumTransmitAntennas = 2; % Number of transmit antennas
cfgTriggerUser(4).NumSpaceTimeStreams = 1; % Number of space-time streams
cfgTriggerUser(4).ChannelCoding = 'ldpc'; % Channel coding
cfgTriggerUser(4).LDPCExtraSymbol = ldpcExtraSymbol; % LDPC extra symbols
cfgTriggerUser(4).SpatialMapping = 'fourier'; % Spatial mapping

A packet containing random data is now transmitted by each user with wlanWaveformGenerator.
The waveform transmitted by each user is stored for analysis.

osf = 1.5; % Over sampling factor
trigInd = wlanFieldIndices(cfgTriggerUser(1),'OversamplingFactor',osf); % Get the indices of each field
txTrigStore = zeros(trigInd.EHTData(2),numUsers);
for userIdx = 1:numUsers
 % Generate waveform for a user
 cfgTrigger =cfgTriggerUser(userIdx);
 txPSDU = randi([0 1],psduLength(cfgTrigger)*8,1);
 txTrig = wlanWaveformGenerator(txPSDU,cfgTrigger,'OversamplingFactor',osf);

 % Store the transmitted STA waveform for analysis
 txTrigStore(:,userIdx) = sum(txTrig,2);
end

The spectrum of the transmitted oversampled waveform from each STA shows the different portions
of the spectrum used, and the overlap in the MU-MIMO RU.

fs = wlanSampleRate(cfgTriggerUser(1));
ofdmInfo = wlanEHTOFDMInfo('EHT-Data',cfgTriggerUser(1));
rbw = fs/ofdmInfo.FFTLength; % Resolution bandwidth
spectrumScope = spectrumAnalyzer(SampleRate=fs,...
 RBWSource='property',RBW=rbw,...
 AveragingMethod='exponential',ForgettingFactor=0.25,...
 ChannelNames={'MRU#1 User 1','MRU#1 User 2','RU#2','MRU#3'},...
 ShowLegend=true,Title='Transmitted EHT TB Waveform per User');
spectrumScope(txTrigStore);

1 PHY Modeling

1-42

function spectrumScope = plotSpectrumAndSpectrogram(tx,cfg,osf,titleStr)
 % Plot the specrum and spectrogram for a given waveform and
 % configuration
 fs = wlanSampleRate(cfg.ChannelBandwidth,'OversamplingFactor',osf); % Get baseband sample rate
 ofdmInfo = wlanEHTOFDMInfo('EHT-Data',cfg,1,'OversamplingFactor',osf);
 fftsize = ofdmInfo.FFTLength; % Use the data field fft size
 rbw = fs/fftsize; % Resolution bandwidth
 spectrumScope = spectrumAnalyzer(SampleRate=fs,...
 RBWSource='property',RBW=rbw,...
 AveragingMethod='exponential',ForgettingFactor=0.25,...
 ReducePlotRate=false,YLimits=[-100,10],...
 Title=titleStr);
 spectrumScope.ViewType = 'spectrum-and-spectrogram';
 spectrumScope.TimeSpanSource = 'property';
 spectrumScope.TimeSpan = length(tx)/fs;
 spectrumScope(tx)
end

Appendix A

The RU allocation table for allocations <= 20 MHz is shown below, with annotated descriptions.

 802.11be Waveform Generation

1-43

RU allocation and EHT-SIG user signaling for allocations >= 20 MHz, with annotated descriptions.

RU allocation and EHT-SIG user signaling for 242-, 484-, 996-, and 2x996-tone RUs.

MRU allocation and EHT-SIG user signaling for allocation >=80 MHz.

1 PHY Modeling

1-44

Appendix B

Non-OFDMA punctured channel indication for a 80 MHz PPDU, with annotated descriptions.

 802.11be Waveform Generation

1-45

Non-OFDMA punctured channel indication for a 160 MHz PPDU, with annotated descriptions.

Non-OFDMA punctured channel indication for a 320 MHz PPDU.

1 PHY Modeling

1-46

Related Examples

• “802.11be Transmitter Measurements” on page 3-2. Measure transmitter modulation accuracy,
spectral mask, and spectral flatness of an EHT MU waveform.

• “802.11be Packet Error Rate Simulation for an EHT MU Single-User Packet Format” on page 6-
37 Measure the packet error rate of an EHT MU single user packet format.

• “802.11be Packet Error Rate Simulation for Uplink Trigger-Based Format” on page 6-17 Measure
the packet error rate of an EHT TB transmission.

References

1 IEEE P802.11be™/D2.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 8: Enhancements for extremely high throughput (EHT).

2 IEEE Std 802.11ax(TM)-2021. IEEE Standard for Information Technology - Telecommunications
and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High Efficiency WLAN.

 802.11be Waveform Generation

1-47

802.11az Waveform Generation

This example shows how to parameterize and generate IEEE® 802.11az™ high-efficiency (HE)
ranging null data packet (NDP) waveforms and highlights some of the key features of the standard.

Introduction

The 802.11az standard [1 on page 1-51], commonly referred to as next-generation positioning
(NGP), enables a station to identify its position relative to other stations. This standard supports two
HE ranging physical layer (PHY) protocol data unit (PPDU) formats:

• HE ranging NDP
• HE trigger-based (TB) ranging NDP

The HE ranging NDP and HE TB ranging NDP are the respective analogues of the HE sounding NDP
and HE TB NDP feedback PPDU formats, as defined in the 802.11ax™ standard. For more
information on these HE PPDU formats, see [2 on page 1-51].

The HE ranging NDP supports the positioning of one or more users with an optional secure HE long
training field (HE-LTF) sequence. The single-user HE ranging waveform contains HE-LTF symbols for
a single user, which also support an optional secure HE-LTF sequence. The multi-user HE ranging
waveform permits only secure HE-LTF symbols for multiple users. Single-user and multi-user
waveforms can contain multiple repetitions of the HE-LTF symbols. This feature can help improve
distance estimation accuracy.

Because the 802.11az standard uses the same underlying PHY technologies as the 802.11ax
standard, the processing chains are very similar. This example shows how to generate 802.11az HE
ranging NDP waveforms with secure and nonsecure HE-LTF sequences.

HE Ranging NDP Without Secure HE-LTF

The HE Ranging NDP contains HE-LTF symbols for a single user and uses the regular HE-LTF
sequence defined in [2 on page 1-51]. The number of HE-LTF symbols is the product of the number
of HE-LTF repetitions and the number of HE-LTF symbols per repetition. The number of HE-LTF
symbols depends on the number of space-time streams as specified in Table 21-13 of [3 on page 1-
51]. The construction of HE-LTF symbols in an HE Ranging NDP follows the steps defined in section
27.3.10.10 of [2 on page 1-51] for all repeated HE-LTF symbols in an HE-LTF.

Single-User HE Ranging NDP Generation

Configure a transmission with two antennas, two space-time streams, and two HE-LTF repetitions.

cfg = heRangingConfig('NumTransmitAntennas',2);
cfg.User{1}.NumSpaceTimeStreams = 2;
cfg.User{1}.NumHELTFRepetition = 2;

Generate the HE ranging NDP waveform for the specified configuration.

tx = heRangingWaveformGenerator(cfg);

Plot the transmission power on the first antenna.

heRangingWavGenPlot(tx,cfg);

1 PHY Modeling

1-48

HE Ranging NDP With Secure HE-LTF

To generate an HE ranging NDP with secure HE-LTF symbols, as defined in [2 on page 1-51], specify
either of these transmission parameter combinations.

• A single-user heRangingConfig object with its SecureHELTF property set to 1 (true)
• A multi-user heRangingConfig object

The secure HE-LTF comprises a randomized LTF sequence as defined in Section 27.3.17c of [1 on
page 1-51]. To specify this sequence for a chosen user, set the SecureHELTFSequence property of
the corresponding User property of the heRangingConfig object. If the number of bits in the
SecureHELTFSequence property is less than the required number of bits for the given user
configuration, the object cyclically extends the secure sequence. If the number of bits in
SecureHELTFSequence is more than the required number of bits for the given user configuration,
the object uses only the required number of bits. The object extracts the required bits from the
specified hexadecimal sequence. When the transmission contains a secure HE-LTF sequence, the
sequence must use a zero-power guard interval for the HE-LTF symbols. The packet extension (PE)
starts with a zero-power guard interval.

Single-User HE Ranging NDP with Secure HE-LTF Generation

Configure a transmission with two antennas, two space-time streams, three HE-LTF repetitions, and
secure HE-LTF symbols.

cfg = heRangingConfig('NumTransmitAntennas',2,'SecureHELTF',true);
cfg.User{1}.NumSpaceTimeStreams = 2;

 802.11az Waveform Generation

1-49

cfg.User{1}.NumHELTFRepetition = 3;
cfg.User{1}.SecureHELTFSequence = '12345678ABCDEF1234';

Generate the HE ranging NDP waveform for the specified configuration.

tx = heRangingWaveformGenerator(cfg);

Plot the transmission power on the first antenna.

heRangingWavGenPlot(tx,cfg);

Multi-User HE Ranging NDP Generation

A multi-user HE ranging NDP waveform contains secure HE-LTF symbols for multiple users. The
transmission concatenates HE-LTF symbols for each user up to a maximum of 64 consecutive
symbols. This example demonstrates waveform generation with a secure HE-LTF sequence shown for
two users. Configure transmission parameters, specifying two users and the number of space-time
streams and HE-LTF repetitions for each user.

cfg = heRangingConfig(2);
cfg.User{1}.NumSpaceTimeStreams = 1;
cfg.User{1}.NumHELTFRepetition = 2;
cfg.User{2}.NumSpaceTimeStreams = 1;
cfg.User{2}.NumHELTFRepetition = 3;

Determine the number of secure HE-LTF bits required to generate the secure HE-LTF symbols for
each user by using the numSecureHELTFBits object function.

1 PHY Modeling

1-50

numNibbles = numSecureHELTFBits(cfg)/4; % 4 bits per nibble

Set the secure HE-LTF sequences for each user.

secureSeqUser1 = 'a12c67f8b90dc56e78a2b3f1';
cfg.User{1}.SecureHELTFSequence = secureSeqUser1(1:numNibbles(1));
secureSeqUser2 = 'b3a49c5e6c1a2d35ed47c2d915f';
cfg.User{2}.SecureHELTFSequence = secureSeqUser2(1:numNibbles(2));

Generate the HE ranging NDP waveform for the specified configuration.

tx = heRangingWaveformGenerator(cfg);

Plot the transmission power on the first antenna.

heRangingWavGenPlot(tx,cfg);

References

1 IEEE P802.11az™/D2.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems Local and metropolitan area networks - Specific
requirements - Amendment 3: Enhancements for positioning.

2 IEEE 802.11ax™-2021 Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

 802.11az Waveform Generation

1-51

3 IEEE Std 802.11™-2020 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

1 PHY Modeling

1-52

Build VHT PPDU

This example shows how to build VHT PPDUs by using the WLAN waveform generator function or by
building each field individually, then concatenating.

You can create a VHT, HT, or non-HT PPDU waveform by generating and concatenating waveforms for
individual PPDU fields.

This list shows which functions you can use to build a PPDU for each PHY format.

• Very high throughput (VHT) — wlanLSTF, wlanLLTF, wlanLSIG, wlanVHTSTF, wlanVHTLTF,
wlanVHTSIGA, wlanVHTSIGB, and wlanVHTData

• High throughput (HT) — wlanLSTF, wlanLLTF, wlanLSIG, wlanHTSTF, wlanHTLTF,
wlanHTSIG, and wlanHTData

• Non-high-throughput (non-HT) — wlanLSTF, wlanLLTF, wlanLSIG, and wlanNonHTData

Generate VHT Waveform Using Waveform Generator Function

Create a VHT configuration object.

cfgVHT = wlanVHTConfig;

Generate the VHT PPDU. The length of the input data sequence in bits must be eight times the length
of the PSDU, which is expressed in bytes. Turn off windowing.

bits = randi([0 1],cfgVHT.PSDULength*8,1);
y = wlanWaveformGenerator(bits,cfgVHT,WindowTransitionTime=0);

Plot the magnitude of the waveform.

fsVHT = wlanSampleRate(cfgVHT.ChannelBandwidth);
time = (0:length(y)-1)/fsVHT;
plot(time,abs(y))
xlabel ('Time (seconds)')
ylabel('Magnitude')

 Build VHT PPDU

1-53

Build VHT Waveform From Individual PPDU Fields

Create L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, and VHT-SIG-B preamble fields.

lstf = wlanLSTF(cfgVHT);
lltf = wlanLLTF(cfgVHT);
lsig = wlanLSIG(cfgVHT);
vhtSigA = wlanVHTSIGA(cfgVHT);
vhtstf = wlanVHTSTF(cfgVHT);
vhtltf = wlanVHTLTF(cfgVHT);
vhtSigB = wlanVHTSIGB(cfgVHT);

Generate the VHT-Data field using the input data bits.

vhtData = wlanVHTData(bits,cfgVHT);

Concatenate the individual fields to create a single PPDU.

z = [lstf; lltf; lsig; vhtSigA; vhtstf; vhtltf; vhtSigB; vhtData];

Verify that the PPDUs created by the two methods are identical.

isequal(y,z)

1 PHY Modeling

1-54

ans = logical
 1

See Also

Related Examples
• “Waveform Generation”

 Build VHT PPDU

1-55

Generate VHT Multi-User Waveform

This example shows how to generate a VHT multi-user waveform from individual components. It also
shows how to generate the same waveform by using the wlanWaveformGenerator function.

Create a VHT configuration object, specifying three users and three transmit antennas.

vht = wlanVHTConfig('NumUsers',3,'NumTransmitAntennas',3);

Set the number of space-time streams to the vector [1 1 1], which indicates that each user is
assigned one space-time stream. Set the user positions to [0 1 2]. Set the group ID to 5. Group ID
values from 1 to 62 apply for multiuser operation.

vht.NumSpaceTimeStreams = [1 1 1];
vht.UserPositions = [0 1 2];
vht.GroupID = 5;

Set a different MCS value for each user.

vht.MCS = [0 2 4];

Set the APEP length to 2000, 1400, and 1800 bytes. Each element corresponds to the number of
bytes assigned to each user.

vht.APEPLength = [2000 1400 1800]

vht =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'
 NumUsers: 3
 UserPositions: [0 1 2]
 NumTransmitAntennas: 3
 NumSpaceTimeStreams: [1 1 1]
 SpatialMapping: 'Direct'
 MCS: [0 2 4]
 ChannelCoding: 'BCC'
 APEPLength: [2000 1400 1800]
 GuardInterval: 'Long'
 GroupID: 5

 Read-only properties:
 PSDULength: [2000 6008 12019]

Display the PSDU lengths for the three users. The PSDU length is a function of both the APEP length
and the MCS value.

vht.PSDULength

ans = 1×3

 2000 6008 12019

Display the field indices for the VHT waveform.

1 PHY Modeling

1-56

ind = wlanFieldIndices(vht)

ind = struct with fields:
 LSTF: [1 640]
 LLTF: [641 1280]
 LSIG: [1281 1600]
 VHTSIGA: [1601 2240]
 VHTSTF: [2241 2560]
 VHTLTF: [2561 3840]
 VHTSIGB: [3841 4160]
 VHTData: [4161 48000]

Create the individual fields that comprise the VHT waveform.

lstf = wlanLSTF(vht);
lltf = wlanLLTF(vht);
lsig = wlanLSIG(vht);
[vhtsigA,sigAbits] = wlanVHTSIGA(vht);
vhtstf = wlanVHTSTF(vht);
vhtltf = wlanVHTLTF(vht);
[vhtsigB,sigBbits] = wlanVHTSIGB(vht);

Extract the first two VHT-SIG-A information bits and convert them to their decimal equivalent.

bw = bit2int(double(sigAbits(1:2)),2,false)

bw = 2

The value, 2, corresponds to an 80 MHz bandwidth (see wlanVHTSIGA).

Extract VHT-SIG-A information bits 5 through 10, and convert them to their decimal equivalent.

groupid = bit2int(double(sigAbits(5:10)),6,false)

groupid = 5

The extracted group ID, 5, matches the corresponding property in the VHT configuration object.

Extract the packet length from the VHT-SIG-B information bits. For multiuser operation with an 80
MHz bandwidth, the first 19 bits contain the APEP length information. Convert the field lengths to
their decimal equivalents. Multiply them by 4 because the length of the VHT-SIG-B field is expressed
in units of 4 bytes.

pktLen = bit2int(double(sigBbits(1:19,:)),19,false)'*4

pktLen = 3×1

 2000
 1400
 1800

Confirm that the extracted APEP length matches the value set in the configuration object.

isequal(pktLen',vht.APEPLength)

ans = logical
 1

 Generate VHT Multi-User Waveform

1-57

Extract the MCS values from the VHT-SIG-B information bits. The MCS component is specified by bits
20 to 23.

mcs = bit2int(double(sigBbits(20:23,:)),4,false)'

mcs = 3×1

 0
 2
 4

The values correspond to those set in the VHT configuration object.

Create three data sequences, one for each user.

d1 = randi([0 1],vht.PSDULength(1)*8,1);
d2 = randi([0 1],vht.PSDULength(2)*8,1);
d3 = randi([0 1],vht.PSDULength(3)*8,1);

Generate a VHT data field using these data sequences.

vhtdata = wlanVHTData({d1 d2 d3},vht);

Generate a multiuser VHT waveform with windowing is disabled. Extract the data field from the
waveform.

wv = wlanWaveformGenerator({d1 d2 d3},vht,'WindowTransitionTime',0);
wvdata = wv(ind.VHTData(1):ind.VHTData(2),:);

Confirm that the two generation approaches produce identical results.

isequal(vhtdata,wvdata)

ans = logical
 1

Visualize the waveform by plotting its magnitude.

t = ((1:length(wv))'-1)/80e6;
plot(t,abs(wv))
xlabel('Time (s)')
ylabel('Magnitude')

1 PHY Modeling

1-58

 Generate VHT Multi-User Waveform

1-59

Basic VHT Data Recovery

This example shows how to perform basic VHT data recovery. It also shows how to recover VHT data
when the received signal has a carrier frequency offset. Similar procedures can be used to recover
data with the HT and non-HT formats.

Basic Data Recovery

WLAN Toolbox™ provides functions to generate and recover IEEE® 802.11ac™ standards-compliant
waveforms. The data recovery process comprises these steps.

1 Generate a VHT waveform
2 Pass the waveform through a channel
3 Extract the VHT-LTF and demodulate
4 Estimate the channel by using the demodulated VHT-LTF
5 Extract the data field
6 Recover the data by using the channel and noise variance estimates

The block diagram shows these steps, along with their corresponding commands.

Create VHT configuration object.

cfg = wlanVHTConfig;

Create a VHT transmit waveform by using the VHT configuration object. Set the data sequence to
[1;0;1;1]. The waveform generator function repeats the data sequence to generate the specified
number of packets.

txSig = wlanWaveformGenerator([1;0;1;1],cfg);

1 PHY Modeling

1-60

Pass the received signal through an AWGN channel.

rxSig = awgn(txSig,10);

Determine the field indices of the waveform.

ind = wlanFieldIndices(cfg);

Extract the VHT-LTF from the received signal.

rxVHTLTF = rxSig(ind.VHTLTF(1):ind.VHTLTF(2),:);

Demodulate the VHT-LTF. Estimate the channel response by using the demodulated signal.

demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,cfg);
chEst = wlanVHTLTFChannelEstimate(demodVHTLTF,cfg);

Extract the VHT data field.

rxData = rxSig(ind.VHTData(1):ind.VHTData(2),:);

Recover the information bits by using the channel and noise variance estimates. Confirm that the first
8 bits match two repetitions of the input data sequence of [1;0;1;1].

rxBits = wlanVHTDataRecover(rxData,chEst,0.1,cfg);

rxBits(1:8)

ans = 8x1 int8 column vector

 1
 0
 1
 1
 1
 0
 1
 1

Data Recovery with Frequency Correction

Data recovery when a carrier frequency offset is present is accomplished by these steps.

1 Generate a VHT waveform
2 Pass the waveform through a channel
3 Extract the L-STF and perform a coarse frequency offset estimate
4 Correct for the offset by using the coarse estimate
5 Extract the L-LTF and perform a fine frequency offset estimate
6 Correct for the offset by using the fine estimate
7 Extract the VHT-LTF and demodulate
8 Estimate the channel by using the demodulated VHT-LTF
9 Extract the data field
10 Recover the data by using the channel and noise variance estimates

 Basic VHT Data Recovery

1-61

The block diagram shows these steps, along with their corresponding commands.

Set the channel bandwidth and sample rate.

cbw = 'CBW160';
fs = 160e6;

Create a VHT configuration object that supports a 2x2 MIMO transmission.

cfg = wlanVHTConfig('ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],cfg.PSDULength*8,1);
txSig = wlanWaveformGenerator(txPSDU,cfg);

Create a 2x2 TGac channel.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',2,'NumReceiveAntennas',2);

Create a phase and frequency offset object.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

Pass the transmitted waveform through the noisy TGac channel.

rxSigNoNoise = tgacChan(txSig);
rxSig = awgn(rxSigNoNoise,15);

Introduce a frequency offset of 500 Hz to the received signal.

rxSigFreqOffset = pfOffset(rxSig,500);

Find the start and stop indices for all component fields of the PPDU.

1 PHY Modeling

1-62

ind = wlanFieldIndices(cfg);

Extract the L-STF. Estimate and correct for the carrier frequency offset.

rxLSTF = rxSigFreqOffset(ind.LSTF(1):ind.LSTF(2),:);

foffset1 = wlanCoarseCFOEstimate(rxLSTF,cbw);
rxSig1 = pfOffset(rxSigFreqOffset,-foffset1);

Extract the L-LTF from the corrected signal. Estimate and correct for the residual frequency offset.

rxLLTF = rxSig1(ind.LLTF(1):ind.LLTF(2),:);

foffset2 = wlanFineCFOEstimate(rxLLTF,cbw);
rxSig2 = pfOffset(rxSig1,-foffset2);

Extract and demodulate the VHT-LTF. Estimate the channel coefficients.

rxVHTLTF = rxSig2(ind.VHTLTF(1):ind.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,cfg);
chEst = wlanVHTLTFChannelEstimate(demodVHTLTF,cfg);

Extract the VHT data field from the received and frequency-corrected PPDU. Recover the data field.

rxData = rxSig2(ind.VHTData(1):ind.VHTData(2),:);
rxPSDU = wlanVHTDataRecover(rxData,chEst,0.03,cfg);

Calculate the number of bit errors in the received packet.

numErr = biterr(txPSDU,rxPSDU)

numErr = 2

 Basic VHT Data Recovery

1-63

802.11ax Waveform Generation

This example shows how to parameterize and generate different IEEE® 802.11ax™ (Wi-Fi 6) high
efficiency (HE) format packets.

Introduction

IEEE Std 802.11ax™-2021 [1] specifies four high efficiency (HE) packet formats:

1 Single-user
2 Extended-range single-user
3 Multi-user
4 Trigger-based

This example shows how packets can be generated for these different formats, and demonstrates
some of the key features of the draft standard [1].

HE Single-User Format

An HE single-user (SU) packet is a full-band transmission to a single user. The transmit parameters
for the HE SU format are configured using a wlanHESUConfig object. The wlanHESUConfig object
can be configured to operate in extended-range mode. To enable or disable this mode, set the
ExtendedRange property to true or false. In this example we create a configuration for an HE SU
transmission and configure transmission properties.

cfgSU = wlanHESUConfig;
cfgSU.ExtendedRange = false; % Do not use extended-range format
cfgSU.ChannelBandwidth = 'CBW20'; % Channel bandwidth
cfgSU.APEPLength = 1000; % Payload length in bytes
cfgSU.MCS = 0; % Modulation and coding scheme
cfgSU.ChannelCoding = 'LDPC'; % Channel coding
cfgSU.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgSU.NumTransmitAntennas = 1; % Number of transmit antennas

A single-user packet can be generated with the waveform generator, wlanWaveformGenerator. The
getPSDULength() method returns the required PSDU length given the transmission configuration.
This length is used to create a random PSDU for transmission.

psdu = randi([0 1],getPSDULength(cfgSU)*8,1,'int8'); % Random PSDU
txSUWaveform = wlanWaveformGenerator(psdu,cfgSU); % Create packet

HE Extended-Range Single-User Format

An extended-range single-user packet has the same fields as the standard single-user format, but the
powers of some fields are boosted, and some fields are repeated to improve performance at low
SNRs. An extended-range packet can be configured using a wlanHESUConfig object with
ChannelBandwidth set to 'CBW20' and ExtendedRange set to true. An extended-range packet
has an option to only transmit in the upper 106-tone resource unit (RU) within the 20 MHz channel,
or over the entire bandwidth. This can be configured with the Upper106ToneRU property:

cfgExtSU = cfgSU;
cfgExtSU.ExtendedRange = true; % Enable extended-range format
cfgExtSU.Upper106ToneRU = true; % Use only upper 106-tone RU

1 PHY Modeling

1-64

% Generate a packet
psdu = randi([0 1],getPSDULength(cfgExtSU)*8,1,'int8'); % Random PSDU
txExtSUWaveform = wlanWaveformGenerator(psdu,cfgExtSU); % Create packet

Look at the spectrum and spectrogram of the generated signal. In the spectrogram you can see that
the packet headers use the available bandwidth, however, the data portion only occupies the upper
half of the channel.

fs = wlanSampleRate(cfgExtSU); % Get baseband sample rate
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgExtSU);
fftsize = ofdmInfo.FFTLength; % Use the data field fft size
rbw = fs/fftsize; % Resoluton bandwidth
spectrumScope = spectrumAnalyzer(SampleRate=fs,...
 RBWSource='property',RBW=rbw,...
 AveragingMethod='exponential',ForgettingFactor=0.25,...
 YLimits=[-50,20],...
 Title='HE Extended-Range SU with Active Upper 106-Tone RU');
spectrumScope.ViewType = 'Spectrum and Spectrogram';
spectrumScope.TimeSpanSource = 'Property';
spectrumScope.TimeSpan = length(txExtSUWaveform)/fs;
spectrumScope(txExtSUWaveform)

If you compare the power of the L-STF and L-LTF fields you can see that the extended-range
transmission is boosted by 3 dB.

figure;
ind = wlanFieldIndices(cfgExtSU);

 802.11ax Waveform Generation

1-65

t = (0:(double(ind.LLTF(2))-1))/fs*1e6;
plot(t,20*log10(movmean(abs(txSUWaveform(1:ind.LLTF(2))),20)),'-b')
hold on;
plot(t,20*log10(movmean(abs(txExtSUWaveform(1:ind.LLTF(2))),20)),'-r')
grid on;
title('Power of L-STF and L-LTF (1 us Moving Average)');
xlabel('Time (us)');
ylabel('Power (dBW)');
legend('HE SU','HE Extended-Range SU','Location','SouthWest');

HE Multi-User Format - OFDMA

The HE multi-user (HE MU) format can be configured for an OFDMA transmission, a MU-MIMO
transmission, or a combination of the two. This flexibility allows an HE MU packet to transmit to a
single user over the whole band, multiple users over different parts of the band (OFDMA), or multiple
users over the same part of the band (MU-MIMO).

For an OFDMA transmission, the channel bandwidth is divided into resource units (RUs). An RU is a
group of subcarriers assigned to one or more users. An RU is defined by a size (the number of
subcarriers) and an index. The RU index specifies the location of the RU within the channel. For
example, in an 80 MHz transmission there are four possible 242-tone RUs, one in each 20 MHz
subchannel. RU# 242-1 (size 242, index 1) is the RU occupying the lowest absolute frequency within
the 80 MHz, and RU# 242-4 (size 242, index 4) is the RU occupying the highest absolute frequency.
The draft standard defines possible sizes and locations of RUs in Section 27.3.2.2 of [1].

The assignment of RUs in a transmission is defined by the allocation index. The allocation index is
defined in Table 27-26 of [1]. For each 20 MHz subchannel, an 8-bit index describes the number and

1 PHY Modeling

1-66

size of RUs, and the number of users transmitted on each RU. The allocation index also determines
which content channel is used to signal a user in HE-SIG-B. The allocation indices within Table 27-26,
and the corresponding RU assignments, are provided in the table returned by the function
heRUAllocationTable. The first 10 allocations within the table are shown below. For each
allocation index, the 8-bit allocation index, the number of users, number of RUs, RU indices, RU sizes,
and number of users per RU are displayed. A note is also provided about allocations which are
reserved, or serve a special purpose. The allocation table can also be viewed in the Appendix.

allocationTable = heRUAllocationTable;
disp('First 10 entries in the allocation table: ')
disp(allocationTable(1:10,:));

First 10 entries in the allocation table:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _____________________ ______________________________ _____________________ ____

 0 "00000000" 9 9 {[1 2 3 4 5 6 7 8 9]} {[26 26 26 26 26 26 26 26 26]} {[1 1 1 1 1 1 1 1 1]} ""
 1 "00000001" 8 8 {[1 2 3 4 5 6 7 4]} {[26 26 26 26 26 26 26 52]} {[1 1 1 1 1 1 1 1]} ""
 2 "00000010" 8 8 {[1 2 3 4 5 3 8 9]} {[26 26 26 26 26 52 26 26]} {[1 1 1 1 1 1 1 1]} ""
 3 "00000011" 7 7 {[1 2 3 4 5 3 4]} {[26 26 26 26 26 52 52]} {[1 1 1 1 1 1 1]} ""
 4 "00000100" 8 8 {[1 2 2 5 6 7 8 9]} {[26 26 52 26 26 26 26 26]} {[1 1 1 1 1 1 1 1]} ""
 5 "00000101" 7 7 {[1 2 2 5 6 7 4]} {[26 26 52 26 26 26 52]} {[1 1 1 1 1 1 1]} ""
 6 "00000110" 7 7 {[1 2 2 5 3 8 9]} {[26 26 52 26 52 26 26]} {[1 1 1 1 1 1 1]} ""
 7 "00000111" 6 6 {[1 2 2 5 3 4]} {[26 26 52 26 52 52]} {[1 1 1 1 1 1]} ""
 8 "00001000" 8 8 {[1 3 4 5 6 7 8 9]} {[52 26 26 26 26 26 26 26]} {[1 1 1 1 1 1 1 1]} ""
 9 "00001001" 7 7 {[1 3 4 5 6 7 4]} {[52 26 26 26 26 26 52]} {[1 1 1 1 1 1 1]} ""

A wlanHEMUConfig object is used to configure the transmission of an HE MU packet. The allocation
index for each 20 MHz subchannel must be provided when creating an HE MU configuration object,
wlanHEMUConfig. An integer between 0 and 223, corresponding to the 8-bit number in Table 27-26
of [1], must be provided for each 20 MHz subchannel.

The allocation index can be provided as a decimal or 8-bit binary sequence. In this example, a 20
MHz HE MU configuration is created with 8-bit allocation index "10000000". This is equivalent to the
decimal allocation index 128. This configuration specifies 3 RUs, each with one user.

allocationIndex = "10000000"; % 3 RUs, 1 user per RU
cfgMU = wlanHEMUConfig(allocationIndex);

The showAllocation method visualizes the occupied RUs and subcarriers for the specified
configuration. The colored blocks illustrate the occupied subcarriers in the pre-HE and HE portions of
the packet. White indicates subcarriers are unoccupied. The pre-HE portion illustrates the occupied
subcarriers in the fields preceding HE-STF. The HE portion illustrates the occupied subcarriers in the
HE-STF, HE-LTF and HE-Data field and therefore shows the RU allocation. Clicking on an RU will
display information about the RU. The RU number corresponds to the i-th RU element of the
cfgMU.RU property. The size and index are the details of the RU. The RU index is the i-th possible RU
of the corresponding RU size within the channel bandwidth, for example Index 2 is the 2nd possible
106-tone RU within the 20 MHz channel bandwidth. The user number corresponds to the i-th User
element of the cfgMU.User property, and the user field in HE-SIG-B. Note the middle RU (RU #2) is
split across the DC subcarriers.

showAllocation(cfgMU);
axAlloc = gca; % Get axis handle for subsequent plotting

 802.11ax Waveform Generation

1-67

The ruInfo method provides details of the RUs in the configuration. In this case we can see three
users and three RUs.

allocInfo = ruInfo(cfgMU);
disp('Allocation info:')
disp(allocInfo)

Allocation info:
 NumUsers: 3
 NumRUs: 3
 RUIndices: [1 5 2]
 RUSizes: [106 26 106]
 NumUsersPerRU: [1 1 1]
 NumSpaceTimeStreamsPerRU: [1 1 1]
 PowerBoostFactorPerRU: [1 1 1]
 RUNumbers: [1 2 3]

The properties of cfgMU describe the transmission configuration. The cfgMU.RU and cfgMU.User
properties of cfgMU are cell arrays. Each element of the cell arrays contains an object which
configures an RU or a User. When the cfgMU object is created, the elements of cfgMU.RU and
cfgMU.User are configured to create the desired number of RUs and users. Each element of
cfgMU.RU is a wlanHEMURU object describing the configuration of an RU. Similarly, each element of
cfgMU.User is a wlanHEMUUser object describing the configuration of a User. This object hierarchy
is shown below:

1 PHY Modeling

1-68

In this example, three RUs are specified by the allocation index 128, therefore cfgMU.RU is a cell
array with three elements. The index and size of each RU are configured according to the allocation
index used to create cfgMU. After the object is created, each RU can be configured to create the
desired transmission configuration, by setting the properties of the appropriate RU object. For
example, the spatial mapping and power boost factor can be configured per RU. The Size and Index
properties of each RU are fixed once the object is created, and therefore are read-only properties.
Similarly, the UserNumbers property is read-only and indicates which user is transmitted on the RU.
For this configuration the first RU is size 106, index 1.

disp('First RU configuration:')
disp(cfgMU.RU{1})

First RU configuration:
 wlanHEMURU with properties:

 PowerBoostFactor: 1
 SpatialMapping: 'Direct'

 Read-only properties:
 Size: 106
 Index: 1
 UserNumbers: 1

In this example, the allocation index specifies three users in the transmission, therefore, cfgMU.User
contains three elements. The transmission properties of users can be configured by modifying
individual user objects, for example the MCS, APEP length and channel coding scheme. The read-only
RUNumber property indicates which RU is used to transmit this user.

 802.11ax Waveform Generation

1-69

disp('First user configuration:')
disp(cfgMU.User{1})

First user configuration:
 wlanHEMUUser with properties:

 APEPLength: 100
 MCS: 0
 NumSpaceTimeStreams: 1
 DCM: 0
 ChannelCoding: 'LDPC'
 STAID: 0
 NominalPacketPadding: 0
 PostFECPaddingSource: 'mt19937ar with seed'
 PostFECPaddingSeed: 1

 Read-only properties:
 RUNumber: 1

The number of users per RU, and mapping of users to RUs is determined by the allocation index. The
UserNumbers property of an RU object indicates which users (elements of the cfgMU.User cell
array) are transmitted on that RU. Similarly, the RUNumber property of each User object, indicates
which RU (element of the cfgMU.RU cell array) is used to transmit the user:

This allows the properties of an RU associated with a User to be accessed easily:

ruNum = cfgMU.User{2}.RUNumber; % Get the RU number associated with user 2
disp(cfgMU.RU{ruNum}.SpatialMapping); % Display the spatial mapping

Direct

When an RU serves multiple users, in a MU-MIMO configuration, the UserNumbers property can
index multiple users:

1 PHY Modeling

1-70

Once the cfgMU object is created, transmission parameters can be set as demonstrated below.

% Configure RU 1 and user 1
cfgMU.RU{1}.SpatialMapping = 'Direct';
cfgMU.User{1}.APEPLength = 1e3;
cfgMU.User{1}.MCS = 2;
cfgMU.User{1}.NumSpaceTimeStreams = 4;
cfgMU.User{1}.ChannelCoding = 'LDPC';

% Configure RU 2 and user 2
cfgMU.RU{2}.SpatialMapping = 'Fourier';
cfgMU.User{2}.APEPLength = 500;
cfgMU.User{2}.MCS = 3;
cfgMU.User{2}.NumSpaceTimeStreams = 2;
cfgMU.User{2}.ChannelCoding = 'LDPC';

% Configure RU 3 and user 3
cfgMU.RU{3}.SpatialMapping = 'Fourier';
cfgMU.User{3}.APEPLength = 100;
cfgMU.User{3}.MCS = 4;
cfgMU.User{3}.DCM = true;
cfgMU.User{3}.NumSpaceTimeStreams = 1;
cfgMU.User{3}.ChannelCoding = 'BCC';

Some transmission parameters are common for all users in the HE MU transmission.

% Configure common parameters for all users
cfgMU.NumTransmitAntennas = 4;
cfgMU.SIGBMCS = 2;

To generate the HE MU waveform, we first create a random PSDU for each user. A cell array is used
to store the PSDU for each user as the PSDU lengths differ. The getPSDULength() method returns a
vector with the required PSDU per user given the configuration. The waveform generator is then
used to create a packet.

 802.11ax Waveform Generation

1-71

psduLength = getPSDULength(cfgMU);
psdu = cell(1,allocInfo.NumUsers);
for i = 1:allocInfo.NumUsers
 psdu{i} = randi([0 1],psduLength(i)*8,1,'int8'); % Generate random PSDU
end

% Create MU packet
txMUWaveform = wlanWaveformGenerator(psdu,cfgMU);

To configure an OFDMA transmission with a channel bandwidth greater than 20 MHz, an allocation
index must be provided for each 20 MHz subchannel. For example, to configure an 80 MHz OFDMA
transmission, four allocation indices are required. In this example four 242-tone RUs are configured.
The allocation index 192 specifies one 242-tone RU with a single user in a 20 MHz subchannel,
therefore the allocation indices [192 192 192 192] are used to create four of these RUs, over 80
MHz:

% Display 192 allocation index properties in the table (the 193rd row)
disp('Allocation #192 table entry:')
disp(allocationTable(193,:))

% Create 80 MHz MU configuration, with four 242-tone RUs
cfgMU80MHz = wlanHEMUConfig([192 192 192 192]);

Allocation #192 table entry:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ _______ _____________ ____

 192 "11000000" 1 1 {[1]} {[242]} {[1]} ""

When multiple 20 MHz subchannels are specified, the ChannelBandwidth property is set to the
appropriate value. For this configuration it is set to 'CBW80' as four 20 MHz subchannels are
specified. This is also visible in the allocation plot.

disp('Channel bandwidth for HE MU allocation:')
disp(cfgMU80MHz.ChannelBandwidth)
showAllocation(cfgMU80MHz,axAlloc)

Channel bandwidth for HE MU allocation:
CBW80

1 PHY Modeling

1-72

HE Multi-User Format - MU-MIMO

An HE MU packet can also transmit an RU to multiple users using MU-MIMO. For a full band MU-
MIMO allocation, the allocation indices between 192 and 199 configure a full-band 20 MHz allocation
(242-tone RU). The index within this range determines how many users are configured. The allocation
details can be viewed in the allocation table. Note the NumUsers column in the table grows with
index but the NumRUs is always 1. The allocation table can also be viewed in the Appendix.

disp('Allocation #192-199 table entries:')
disp(allocationTable(193:200,:)) % Indices 192-199 (rows 193 to 200)

Allocation #192-199 table entries:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ _______ _____________ ____

 192 "11000000" 1 1 {[1]} {[242]} {[1]} ""
 193 "11000001" 2 1 {[1]} {[242]} {[2]} ""
 194 "11000010" 3 1 {[1]} {[242]} {[3]} ""
 195 "11000011" 4 1 {[1]} {[242]} {[4]} ""
 196 "11000100" 5 1 {[1]} {[242]} {[5]} ""
 197 "11000101" 6 1 {[1]} {[242]} {[6]} ""
 198 "11000110" 7 1 {[1]} {[242]} {[7]} ""
 199 "11000111" 8 1 {[1]} {[242]} {[8]} ""

 802.11ax Waveform Generation

1-73

The allocation index 193 transmits a 20 MHz 242-tone RU to two users. In this example, we will
create a transmission with a random spatial mapping matrix which maps a single space-time stream
for each user, onto two transmit antennas.

% Configure 2 users in a 20 MHz channel
cfgMUMIMO = wlanHEMUConfig(193);

% Set the transmission properties of each user
cfgMUMIMO.User{1}.APEPLength = 100; % Bytes
cfgMUMIMO.User{1}.MCS = 2;
cfgMUMIMO.User{1}.ChannelCoding = 'LDPC';
cfgMUMIMO.User{1}.NumSpaceTimeStreams = 1;

cfgMUMIMO.User{2}.APEPLength = 1000; % Bytes
cfgMUMIMO.User{2}.MCS = 6;
cfgMUMIMO.User{2}.ChannelCoding = 'LDPC';
cfgMUMIMO.User{2}.NumSpaceTimeStreams = 1;

% Get the number of occupied subcarriers in the RU
ruIndex = 1; % Get the info for the first (and only) RU
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgMUMIMO,ruIndex);
numST = ofdmInfo.NumTones; % Number of occupied subcarriers

% Set the number of transmit antennas and generate a random spatial mapping
% matrix
numTx = 2;
allocInfo = ruInfo(cfgMUMIMO);
numSTS = allocInfo.NumSpaceTimeStreamsPerRU(ruIndex);
cfgMUMIMO.NumTransmitAntennas = numTx;
cfgMUMIMO.RU{ruIndex}.SpatialMapping = 'Custom';
cfgMUMIMO.RU{ruIndex}.SpatialMappingMatrix = rand(numST,numSTS,numTx);

% Create packet with a repeated bit sequence as the PSDU
txMUMIMOWaveform = wlanWaveformGenerator([1 0 1 0],cfgMUMIMO);

A full band MU-MIMO transmission with a channel bandwidth greater than 20 MHz is created by
providing a single RU allocation index within the range 200-223 when creating the wlanHEMUConfig
object. For these allocations HE-SIG-B compression is used.

The allocation indices between 200 and 207 configure a full-band MU-MIMO 40 MHz allocation (484-
tone RU). The index within this range determines how many users are configured. The allocation
details can be viewed in the allocation table. Note the NumUsers column in the table grows with
index but the NumRUs is always 1.

disp('Allocation #200-207 table entries:')
disp(allocationTable(201:208,:)) % Indices 200-207 (rows 201 to 208)

Allocation #200-207 table entries:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ _______ _____________ ____

 200 "11001000" 1 1 {[1]} {[484]} {[1]} ""
 201 "11001001" 2 1 {[1]} {[484]} {[2]} ""
 202 "11001010" 3 1 {[1]} {[484]} {[3]} ""
 203 "11001011" 4 1 {[1]} {[484]} {[4]} ""
 204 "11001100" 5 1 {[1]} {[484]} {[5]} ""
 205 "11001101" 6 1 {[1]} {[484]} {[6]} ""
 206 "11001110" 7 1 {[1]} {[484]} {[7]} ""

1 PHY Modeling

1-74

 207 "11001111" 8 1 {[1]} {[484]} {[8]} ""

Similarly, the allocation indices between 208 and 215 configure a full-band MU-MIMO 80 MHz
allocation (996-tone RU), and the allocation indices between 216 and 223 configure a full-band MU-
MIMO 160 MHz allocation (2x996-tone RU).

As an example, the allocation index 203 specifies a 484-tone RU with 4 users:

cfg484MU = wlanHEMUConfig(203);
showAllocation(cfg484MU,axAlloc)

HE Multi-User Format - OFDMA with RU Sizes Greater Than 242 Subcarriers

For an HE MU transmission with a channel bandwidth greater than 20 MHz, two HE-SIG-B content
channels are used to signal user configurations. These content channels are duplicated over each 40
MHz subchannel for larger channel bandwidths, as described in Section 27.3.11.8.5 of [1]. When an
RU size greater than 242 is specified as part of an OFDMA system, the users assigned to the RU can
be signaled on either of the two HE-SIG-B content channels. The allocation index provided when
creating an wlanHEMUConfig object controls which content channel each user is signaled on. The
allocation table in the Appendix shows the relevant allocation indices.

As an example, consider the following 80 MHz configuration which serves 7 users:

• One 484-tone RU (RU #1) with four users (users #1-4)
• One 242-tone RU (RU #2) with one user (user #5)

 802.11ax Waveform Generation

1-75

• Two 106-tone RUs (RU #3 and #4), each with one user (users #6 and #7)

To configure an 80 MHz OFDMA transmission, four allocation indices are required, one for each 20
MHz subchannel. To configure the above scenario the allocation indices below are used:

[X Y 192 96]

• X and Y configure the 484-tone RU, with users #1-4. The possible values of X and Y are discussed
below.

• 192 configures a 242-tone RU with one user, user #5.
• 96 signals two 106-tone RUs, each with one user, users #6 and #7.

The selection of X and Y configures the appropriate number of users in the 242-tone RU, and
determines which HE-SIG-B content channel is used to signal the users. A 484-tone RU spans two 20
MHz subchannels, therefore two allocation indices are required. All seven users from the four RUs
will be signaled on the HE-SIG-B content channels, but for now we will only consider the signaling of
users on the 484-tone RU. For the 484-tone RU, the four users can be signaled on the two HE-SIG-B
content channels in different combinations as shown in Table 1.

An allocation index within the range 200-207 specifies 1-8 users on a 484-tone RU. To signal no users
on a content channel, the allocation index 114 or 115 can be used, for a 484-tone or 996-tone RU.
Therefore, the combinations in Table 1 can be defined using two allocation indices as shown in Table
2. The two allocation indices in each row of Table 2 are X and Y.

Therefore, to configure 'Combination E' the following 80 MHz allocation indices are used:

[114 203 192 96]

• 114 and 203 configure the 484-tone RU, with users #1-4.
• 192 configures a 242-tone RU with one user, user #5.

1 PHY Modeling

1-76

• 96 signals two 106-tone RUs, each with one user, users #6 and #7.

cfg484OFDMA = wlanHEMUConfig([114 203 192 96]);
showAllocation(cfg484OFDMA,axAlloc);

To view the HE-SIG-B allocation signaling, use the hePlotHESIGBAllocationMapping function.
This shows the user fields signaled on each HE-SIG-B content channel, and which RU and user in the
wlanHEMUConfig object, each user field signals. In this case we can see the users on RU #1, 3 and 4
are all signaled on content channel 2, and the user of RU #2 is signaled on content channel 1. The
second content channel signals six users, while the first content channel only signals one user.
Therefore, the first content channel will be padded up to the length of the second for transmission. In
the diagram, the RU allocation information is provided in the form index-size, e.g. RU8-106 is the 8th
106-tone RU.

figure;
hePlotHESIGBAllocationMapping(cfg484OFDMA);
axSIGB = gca; % Get axis handle for subsequent plotting

 802.11ax Waveform Generation

1-77

To balance the user field signaling in HE-SIG-B, we can use 'Combination B' in Table 2 when creating
the allocation index for the 484-tone RU. This results in two users being signaled on each content
channel of HE-SIG-B, creating a better balance of user fields, and potentially fewer HE-SIG-B symbols
in the transmission.

cfg484OFDMABalanced = wlanHEMUConfig([201 201 96 192]);
hePlotHESIGBAllocationMapping(cfg484OFDMABalanced,axSIGB);

HE Multi-User Format - Central 26-Tone RU

In an 80 MHz transmission, when a full band RU is not used, the central 26-tone RU can be optionally
active. The central 26-tone RU is enabled using a name-value pair when creating the
wlanHEMUConfig object.

% Create a configuration with no central 26-tone RU
cfgNoCentral = wlanHEMUConfig([192 192 192 192],'LowerCenter26ToneRU',false);
showAllocation(cfgNoCentral,axAlloc);

% Create a configuration with a central 26-tone RU
cfgCentral = wlanHEMUConfig([192 192 192 192],'LowerCenter26ToneRU',true);
showAllocation(cfgCentral,axAlloc);

1 PHY Modeling

1-78

Similarly, for a 160 MHz transmission, the central 26-tone RU in each 80 MHz segment can be
optionally used. Each central 26-tone RU can be enabled using name-value pairs when creating the
wlanHEMUConfig object. In this example only the upper central 26-tone RU is created. Four 242-
tone RUs, each with one user are specified with the allocation index [200 114 114 200 200 114
114 200].

cfgCentral160MHz = wlanHEMUConfig([200 114 114 200 200 114 114 200],'UpperCenter26ToneRU',true);
disp(cfgCentral160MHz)

 wlanHEMUConfig with properties:

 RU: {1x5 cell}
 User: {1x5 cell}
 PrimarySubchannel: 1
 NumTransmitAntennas: 1
 STBC: 0
 GuardInterval: 3.2000
 HELTFType: 4
 SIGBMCS: 0
 SIGBDCM: 0
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0

 Read-only properties:

 802.11ax Waveform Generation

1-79

 ChannelBandwidth: 'CBW160'
 AllocationIndex: [200 114 114 200 200 114 114 200]
 LowerCenter26ToneRU: 0
 UpperCenter26ToneRU: 1

HE Multi-User Format - Preamble Puncturing

In an 80 MHz or 160 MHz transmission, 20 MHz subchannels can be punctured to allow a legacy
system to operate in the punctured channel. This method is also described as channel bonding. To
null a 20 MHz subchannel the 20 MHz subchannel allocation index 113 can be used. The punctured
20 MHz subchannel can be viewed with the showAllocation method.

% Null second lowest 20 MHz subchannel in a 160 MHz configuration
cfgNull = wlanHEMUConfig([192 113 114 200 208 115 115 115]);

% Plot the allocation
showAllocation(cfgNull,axAlloc);

The punctured 20 MHz can also be viewed with the generated waveform and the spectrum analyzer.

% Set the transmission properties of each user in all RUs
cfgNull.User{1}.APEPLength = 100;
cfgNull.User{1}.MCS = 2;
cfgNull.User{1}.ChannelCoding = 'LDPC';
cfgNull.User{1}.NumSpaceTimeStreams = 1;

cfgNull.User{2}.APEPLength = 1000;

1 PHY Modeling

1-80

cfgNull.User{2}.MCS = 6;
cfgNull.User{2}.ChannelCoding = 'LDPC';
cfgNull.User{2}.NumSpaceTimeStreams = 1;

cfgNull.User{3}.APEPLength = 100;
cfgNull.User{3}.MCS = 1;
cfgNull.User{3}.ChannelCoding = 'LDPC';
cfgNull.User{3}.NumSpaceTimeStreams = 1;

% Create packet
txNullWaveform = wlanWaveformGenerator([1 0 1 0],cfgNull);

% Visualize signal spectrum
fs = wlanSampleRate(cfgNull);
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgNull,1);
fftsize = ofdmInfo.FFTLength;
spectrumScope = spectrumAnalyzer(SampleRate=fs,...
 AveragingMethod='exponential',ForgettingFactor=0.99,...
 RBWSource='property',RBW=fs/fftsize,...
 Title='160 MHz HE MU Transmission with Punctured 20 MHz Channel');
spectrumScope(txNullWaveform);

Trigger-Based MU Format

The HE trigger-based (TB) format allows for OFDMA or MU-MIMO transmission in the uplink. Each
station (STA) transmits a TB packet simultaneously, when triggered by the access point (AP). A TB
transmission is controlled entirely by the AP. All the parameters required for the transmission are

 802.11ax Waveform Generation

1-81

provided in a trigger frame to all STAs participating in the TB transmission. In this example a TB
transmission in response to a trigger frame for three users in an OFDMA/MU-MIMO system is
configured; three STAs will transmit simultaneously to an AP.

The 20 MHz allocation 97 is used which corresponds to two RUs, one of which serves two users in
MU-MIMO.

disp('Allocation #97 table entry:')
disp(allocationTable(98,:)) % Index 97 (row 98)

Allocation #97 table entry:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ ___________ _____________ ____

 97 "01100001" 3 2 {[1 2]} {[106 106]} {[1 2]} ""

The allocation information is obtained by creating a MU configuration with wlanHEMUConfig.

% Generate an OFDMA allocation
cfgMU = wlanHEMUConfig(97);
allocationInfo = ruInfo(cfgMU);

In a TB transmission several parameters are the same for all users in the transmission. Some of these
are specified below:

% These parameters are the same for all users in the OFDMA system
trgMethod = 'TriggerFrame'; % Method used to trigger an HE TB PPDU
channelBandwidth = cfgMU.ChannelBandwidth; % Bandwidth of OFDMA system
lsigLength = 142; % L-SIG length
preFECPaddingFactor = 2; % Pre-FEC padding factor
ldpcExtraSymbol = false; % LDPC extra symbol
numHELTFSymbols = 2; % Number of HE-LTF symbols

A TB transmission for a single user within the system is configured with a wlanHETBConfig object.
In this example, a cell array of three objects is created to describe the transmission of the three
users.

% Create a trigger configuration for each user
numUsers = allocationInfo.NumUsers;
cfgTriggerUser = repmat({wlanHETBConfig},1,numUsers);

The non-default system-wide properties are set for each user.

for userIdx = 1:numUsers
 cfgTriggerUser{userIdx}.TriggerMethod = trgMethod;
 cfgTriggerUser{userIdx}.ChannelBandwidth = channelBandwidth;
 cfgTriggerUser{userIdx}.LSIGLength = lsigLength;
 cfgTriggerUser{userIdx}.PreFECPaddingFactor = preFECPaddingFactor;
 cfgTriggerUser{userIdx}.LDPCExtraSymbol = ldpcExtraSymbol;
 cfgTriggerUser{userIdx}.NumHELTFSymbols = numHELTFSymbols;
end

Next the per-user properties are set. When multiple users are transmitting in the same RU, in a MU-
MIMO configuration, each user must transmit on different space-time stream indices. The properties
StartingSpaceTimeStream and NumSpaceTimeStreamSteams must be set for each user to make
sure different space-time streams are used. In this example user 1 and 2 are in a MU-MIMO

1 PHY Modeling

1-82

configuration, therefore StartingSpaceTimeStream for user two is set to 2, as user one is
configured to transmit 1 space-time stream with StartingSpaceTimeStream = 1.

% These parameters are for the first user - RU#1 MU-MIMO user 1
cfgTriggerUser{1}.RUSize = allocationInfo.RUSizes(1);
cfgTriggerUser{1}.RUIndex = allocationInfo.RUIndices(1);
cfgTriggerUser{1}.MCS = 4; % Modulation and coding scheme
cfgTriggerUser{1}.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgTriggerUser{1}.NumTransmitAntennas = 1; % Number of transmit antennas
cfgTriggerUser{1}.StartingSpaceTimeStream = 1; % The starting index of the space-time streams
cfgTriggerUser{1}.ChannelCoding = 'LDPC'; % Channel coding

% These parameters are for the second user - RU#1 MU-MIMO user 2
cfgTriggerUser{2}.RUSize = allocationInfo.RUSizes(1);
cfgTriggerUser{2}.RUIndex = allocationInfo.RUIndices(1);
cfgTriggerUser{2}.MCS = 3; % Modulation and coding scheme
cfgTriggerUser{2}.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgTriggerUser{2}.StartingSpaceTimeStream = 2; % The starting index of the space-time streams
cfgTriggerUser{2}.NumTransmitAntennas = 1; % Number of transmit antennas
cfgTriggerUser{2}.ChannelCoding = 'LDPC'; % Channel coding

% These parameters are for the third user - RU#2
cfgTriggerUser{3}.RUSize = allocationInfo.RUSizes(2);
cfgTriggerUser{3}.RUIndex = allocationInfo.RUIndices(2);
cfgTriggerUser{3}.MCS = 4; % Modulation and coding scheme
cfgTriggerUser{3}.NumSpaceTimeStreams = 2; % Number of space-time streams
cfgTriggerUser{3}.StartingSpaceTimeStream = 1; % The starting index of the space-time streams
cfgTriggerUser{3}.NumTransmitAntennas = 2; % Number of transmit antennas
cfgTriggerUser{3}.ChannelCoding = 'BCC'; % Channel coding

A packet containing random data is now transmitted by each user with wlanWaveformGenerator.
The waveform transmitted by each user is stored for analysis.

trigInd = wlanFieldIndices(cfgTriggerUser{1}); % Get the indices of each field
txTrigStore = zeros(trigInd.HEData(2),numUsers);
for userIdx = 1:numUsers
 % Generate waveform for a user
 cfgTrigger = cfgTriggerUser{userIdx};
 txPSDU = randi([0 1],getPSDULength(cfgTrigger)*8,1);
 txTrig = wlanWaveformGenerator(txPSDU,cfgTrigger);

 % Store the transmitted STA waveform for analysis
 txTrigStore(:,userIdx) = sum(txTrig,2);
end

The spectrum of the transmitted waveform from each STA shows the different portions of the
spectrum used, and the overlap in the MU-MIMO RU.

fs = wlanSampleRate(cfgTriggerUser{1});
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgTriggerUser{1});
spectrumScope = spectrumAnalyzer(SampleRate=fs,...
 Method='welch',...
 AveragingMethod='exponential',ForgettingFactor=0,...
 ChannelNames={'RU#1 User 1','RU#1 User 2','RU#2'},...
 ShowLegend=true,Title='Transmitted HE TB Waveform per User');
spectrumScope(txTrigStore);

 802.11ax Waveform Generation

1-83

Appendix

The RU allocation table for allocations <= 20 MHz is shown below, with annotated descriptions.

1 PHY Modeling

1-84

The RU allocation and HE-SIG-B user signaling for allocations > 20 MHz is shown in the table below,
with annotated descriptions.

Selected Bibliography

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

 802.11ax Waveform Generation

1-85

Basic WLAN Link Modeling

This example shows how to create a basic WLAN link model using WLAN Toolbox™. An IEEE®
802.11™ [1] VHT packet is created, passed through a TGac channel. The received signal is
equalized and decoded in order to recover the transmitted bits.

Introduction

This example shows how a simple transmitter-channel-receiver simulation may be created using
functions from WLAN Toolbox. A VHT transmit and receive link is implemented as shown in the figure
below. A VHT packet is transmitted through a TGac channel, demodulated and the equalized symbols
are recovered. The equalized symbols are decoded to recover the transmitted bits.

Waveform Generation

An 802.11ac VHT transmission is simulated in this example. The transmit parameters for the VHT
format of the 802.11™ standard are configured using a VHT configuration object. The
wlanVHTConfig creates a VHT configuration object. In this example the object is configured for a 20
MHz channel bandwidth, MCS 5 and single transmit antenna.

% Create a format configuration object for a SISO VHT transmission
cfgVHT = wlanVHTConfig;
cfgVHT.NumTransmitAntennas = 1; % Transmit antennas
cfgVHT.NumSpaceTimeStreams = 1; % Space-time streams
cfgVHT.APEPLength = 4096; % APEP length in bytes
cfgVHT.MCS = 5; % Single spatial stream, 64-QAM
cfgVHT.ChannelBandwidth = 'CBW20'; % Transmitted signal bandwidth
Rs = wlanSampleRate(cfgVHT); % Sampling rate

A single VHT packet is generated consisting of training, signal and data fields:

• Non-HT Short Training Field (L-STF)
• Non-HT Long Training Field (L-LTF)
• Non-HT Signal (L-SIG) field
• VHT Signal A (VHT-SIG-A) field
• VHT Short Training Field (VHT-STF)
• VHT Long Training Field (VHT-LTF)
• VHT Signal B (VHT-SIG-B) field
• Data field

These fields are generated separately using functions from WLAN Toolbox and are concatenated to
produce a VHT transmit packet.

The first field in the PPDU is the L-STF and is used for the start of packet detection and automatic
gain control (AGC) setting. It is also used for initial frequency offset estimation and coarse timing

1 PHY Modeling

1-86

synchronization. The wlanLSTF function generates the L-STF field in the time-domain using some of
the parameters included in configuration object cfgVHT.

lstf = wlanLSTF(cfgVHT);

The L-LTF is used for fine time synchronization, channel estimation and fine frequency offset
estimation. The wlanLLTF function generates the L-LTF in the time-domain.

lltf = wlanLLTF(cfgVHT);

The L-SIG field carries packet configuration such as data rate, modulation and code rate for non-HT
format. The wlanLSIG function generates the L-SIG field in the time-domain.

lsig = wlanLSIG(cfgVHT);

The figure below shows the L-STF, L-LTF and L-SIG fields. These fields are common to the VHT, HT-
Mixed and non-HT OFDM transmission formats.

nonHTfield = [lstf;lltf;lsig]; % Combine the non-HT preamble fields

The VHT specific signal and training fields are generated after the non-HT preamble fields. The
purpose of the VHT-SIG-A field is to provide information to allow the receiver to decode the data
payload. The VHT-SIG-A is composed of two symbols VHT-SIG-A1 and VHT-SIG-A2. The wlanVHTSIGA
function generates the VHT-SIG-A field in the time-domain.

vhtsiga = wlanVHTSIGA(cfgVHT);

 Basic WLAN Link Modeling

1-87

The purpose of the VHT-STF is to improve the gain control estimation in a MIMO transmission and
help the receiver detect the repeating pattern similar to the L-STF field. The wlanVHTSTF function
generates the VHT-STF field in the time-domain.

vhtstf = wlanVHTSTF(cfgVHT);

The VHT-LTF provides a mean for the receiver to estimate the channel between the transmitter and
the receiver. Depending on the number of space time streams, it consists of 1,2,4,6 or 8 VHT-LTF
symbols. The wlanVHTLTF function generates the VHT-LTF in the time-domain.

vhtltf = wlanVHTLTF(cfgVHT);

The VHT-SIG-B field is used to set the data rate and the length of the data field payload of the
transmitted packet. The wlanVHTSIGB function generates the VHT-SIG-B field in the time-domain.

vhtsigb = wlanVHTSIGB(cfgVHT);

Construct the preamble with the generated signal and training fields for the VHT format.

preamble = [lstf;lltf;lsig;vhtsiga;vhtstf;vhtltf;vhtsigb];

The wlanVHTData function generates the time-domain VHT data field. The VHT format configuration
cfgVHT specifies the parameters for generating the data field from the PSDU bits. The
cfgVHT.PSDULength property gives the number of bytes to be transmitted in the VHT data field.
This property is used to generate the random PSDU bits txPSDU.

rng(0) % Initialize the random number generator
txPSDU = randi([0 1],cfgVHT.PSDULength*8,1); % Generate PSDU data in bits
data = wlanVHTData(txPSDU,cfgVHT);

% A VHT waveform is constructed by prepending the non-HT and VHT
% preamble fields with data
txWaveform = [preamble;data]; % Transmit VHT PPDU

Alternatively the waveform for a given format configuration can also be generated using a single
function call wlanWaveformGenerator function. This function can produce one or more VHT
packets. By default OFDM windowing is applied to the generated waveform. For more information on
OFDM windowing, see the reference page for the wlanWaveformGenerator function.

Channel Impairments

This section simulates the effects of over-the-air transmission. The transmitted signal is impaired by
the channel and AWGN. The level of the AWGN is given in dBs. In this example the TGac channel
model [2] is used with delay profile Model-B. For this delay profile when the distance between
transmitter and receiver is greater than or equal to 5 meters, the model is in Non-Line-of-Sight (N-
LOS) configuration. This is described further in the help for wlanTGacChannel.

% Parameterize the channel
tgacChannel = wlanTGacChannel;
tgacChannel.DelayProfile = 'Model-B';
tgacChannel.NumTransmitAntennas = cfgVHT.NumTransmitAntennas;
tgacChannel.NumReceiveAntennas = 1;
tgacChannel.LargeScaleFadingEffect = 'None';
tgacChannel.ChannelBandwidth = 'CBW20';
tgacChannel.TransmitReceiveDistance = 5;
tgacChannel.SampleRate = Rs;
tgacChannel.RandomStream = 'mt19937ar with seed';

1 PHY Modeling

1-88

tgacChannel.Seed = 10;

% Pass signal through the channel. Append zeroes to compensate for channel
% filter delay
txWaveform = [txWaveform;zeros(10,1)];
chanOut = tgacChannel(txWaveform);

snr = 40; % In dBs
rxWaveform = awgn(chanOut,snr,0);

% Display the spectrum of the transmitted and received signals. The
% received signal spectrum is affected by the channel
spectrumScope = spectrumAnalyzer(SampleRate=Rs, ...
 AveragingMethod='exponential',ForgettingFactor=0.99, ...
 YLimits=[-30 10],ShowLegend=true, ...
 ChannelNames={'Transmitted waveform','Received waveform'});
spectrumScope([txWaveform rxWaveform]);

Channel Estimation and Equalization

In this section the time-domain VHT-LTF is extracted from the received waveform. The waveform is
assumed to be synchronized to the start of the packet by taking the channel filter delay into account.
The VHT-LTF is demodulated and is used to estimate the channel. The received signal is then
equalized using the channel estimate obtained from the VHT-LTF.

 Basic WLAN Link Modeling

1-89

In this example the received signal is synchronized to the start of the packet by compensating for a
known channel filter delay. For more information on how to automatically detect and synchronize to
the received signal see the following examples:

• “802.11n Packet Error Rate Simulation for 2x2 TGn Channel” on page 5-16
• “802.11ac Packet Error Rate Simulation for 8x8 TGac Channel” on page 5-10

chInfo = info(tgacChannel); % Get characteristic information
% Channel filter delay, measured in samples
chDelay = chInfo.ChannelFilterDelay;
rxWaveform = rxWaveform(chDelay+1:end,:);

After synchronization the receiver has to extract the relevant fields from the received packet. The
wlanFieldIndices function is used to return the start and end time-domain sample indices of all
fields relative to the first sample in a packet. These indices are used to extract the required fields for
further processing.

indField = wlanFieldIndices(cfgVHT);

To extract the VHT-LTF from the received signal the start and end indices are used to generate a
vector of indices.

indVHTLTF = indField.VHTLTF(1):indField.VHTLTF(2);

The VHT-LTF is used to estimate the channel between all space-time streams and receive antennas.
The VHT-LTF is extracted from the received waveform and is demodulated using the
wlanVHTLTFDemodulate function.

demodVHTLTF = wlanVHTLTFDemodulate(rxWaveform(indVHTLTF,:),cfgVHT);

The channel estimate includes the effect of the applied spatial mapping and cyclic shifts at the
transmitter for a multi antenna configuration. The wlanVHTLTFChannelEstimate function returns
the estimated channel between all space-time streams and receive antennas.

chanEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF,cfgVHT);

The transmit signal encounters a deep fade as shown in the channel frequency response in the figure
below. The effect of channel fades can also be seen in the spectrum plot shown previously.

figure
plot(20*log10(abs(chanEstVHTLTF)));
grid on;
title('Estimated Channel Response');
xlabel('Subcarrier index');
ylabel('Power (dB)');

1 PHY Modeling

1-90

To extract the data field from the received signal the start and end indices for the data field are used
to generate a vector of indices.

indData = indField.VHTData(1):indField.VHTData(2);

% Get channel estimates at pilot subcarriers
ofdmInfo = wlanVHTOFDMInfo("VHT-Data",cfgVHT.ChannelBandwidth,cfgVHT.GuardInterval);
chanEstPilots = chanEstVHTLTF(ofdmInfo.PilotIndices);

% Estimate the noise power in VHT data field
nVar = vhtNoiseEstimate(rxWaveform(indData,:),chanEstPilots,cfgVHT);

% Recover the bits and equalized symbols in the VHT Data field using the
% channel estimates from VHT-LTF
[rxPSDU,~,eqSym] = wlanVHTDataRecover(rxWaveform(indData,:),chanEstVHTLTF,nVar,cfgVHT);

% Compare transmit and receive PSDU bits
numErr = biterr(txPSDU,rxPSDU);

The following plot shows the constellation of the equalized symbols at the output of the
wlanVHTDataRecover function compared against the reference constellation. Increasing the
channel noise should begin to spread the distinct constellation points.

% Plot equalized symbols
constellationDiagram = comm.ConstellationDiagram;
constellationDiagram.ReferenceConstellation = wlanReferenceSymbols(cfgVHT);
% Compare received and reference constellation

 Basic WLAN Link Modeling

1-91

constellationDiagram(reshape(eqSym,[],1));
constellationDiagram.Title = 'Equalized Data Symbols';

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 Breit, G., H. Sampath, S. Vermani, et al. TGac Channel Model Addendum. Version 12. IEEE
802.11-09/0308r12, March 2010.

1 PHY Modeling

1-92

802.11ac Multi-User MIMO Precoding

This example shows the transmit and receive processing for a 802.11ac™ multi-user downlink
transmission over a fading channel. The example uses linear precoding techniques based on a
singular-value-decomposition (SVD) of the channel.

Introduction

802.11ac supports downlink (access-point to station) multi-user transmissions for up to four users
and up to eight transmit antennas to increase the aggregate throughput of the link [1]. Based on a
scheduled transmission time for a user, the scheduler looks for other smaller packets ready for
transmission to other users. If available, it schedules these users over the same interval, which
reduces the overall time taken for multiple transmissions.

This simultaneous transmission comes at a higher complexity because successful reception of the
individual user's payloads requires precoding, also known as transmit-end beamforming. Precoding
assumes that channel state information (CSI) is known at the transmitter. A sounding packet, as
described in the “802.11ac Transmit Beamforming” on page 3-26 example, is used to determine the
CSI for each user in a multi-user transmission. Each of the users feed back their individual CSI to the
beamformer. The beamformer uses the CSI from all users to set the precoding (spatial mapping)
matrix for subsequent data transmission.

This example uses a channel inversion technique for a three-user transmission with a different
number of spatial streams allocated per user and different rate parameters per user. The system can
be characterized by the figure below.

The example generates the multi-user transmit waveform, passes it through a channel per user and
decodes the received signal for each user to calculate the bits in error. Prior to the data transmission,

 802.11ac Multi-User MIMO Precoding

1-93

the example uses a null-data packet (NDP) transmission to sound the different channels and
determines the precoding matrix under the assumption of perfect feedback.

Simulation Parameters and Configuration

For 802.11ac, a maximum of eight spatial streams is allowed. A 6x6 MIMO configuration for three
users is used in this example, where the first user has three streams, second has one, and the third
has two streams allocated to it. Different rate parameters and payload sizes for up to four users are
specified as vector parameters. These are indexed appropriately in the transmission configuration
based on the number of active users.

s = rng(21); % Set RNG seed for repeatability

% Transmission parameters
chanBW = 'CBW80'; % Channel bandwidth
numUsers = 3; % Number of active users
numSTSAll = [3 1 2 2]; % Number of streams for 4 users
userPos = [0 1 2 3]; % User positions for maximum 4 users
mcsVec = [4 6 2 2]; % MCS for maximum 4 users
apepVec = [15120 8192 5400 6000]; % Payload, in bytes, for 4 users
chCodingVec = {'BCC', 'LDPC', 'LDPC', 'BCC'}; % Channel coding for 4 users

% Channel and receiver parameters
chanMdl = 'Model-A'; % TGac fading channel model
precodingType = 'ZF'; % Precoding type; ZF or MMSE
snr = 38; % SNR in dB
eqMethod = 'ZF'; % Equalization method

% Create the multi-user VHT format configuration object, appropriately
% indexing into the vector values for the active users
if (numUsers==1)
 groupID = 0;
else
 groupID = 2;
end
numSTSVec = numSTSAll(1:numUsers);
numTx = sum(numSTSVec);
cfgVHTMU = wlanVHTConfig('ChannelBandwidth', chanBW,...
 'NumUsers', numUsers, ...
 'NumTransmitAntennas', numTx, ...
 'GroupID', groupID, ...
 'NumSpaceTimeStreams', numSTSVec,...
 'UserPositions', userPos(1:numUsers), ...
 'MCS', mcsVec(1:numUsers), ...
 'APEPLength', apepVec(1:numUsers), ...
 'ChannelCoding', chCodingVec(1:numUsers));

The number of transmit antennas is set to be the sum total of all the used space-time streams. This
implies no space-time block coding (STBC) or spatial expansion is employed for the transmission.

Sounding (NDP) Configuration

For precoding, channel sounding is first used to determine the channel experienced by the users
(receivers). This channel state information is sent back to the transmitter, for it to be used for
subsequent data transmission. It is assumed that the channel varies slowly over the two
transmissions. For multi-user transmissions, the same NDP (Null Data Packet) is transmitted to each
of the scheduled users [2].

1 PHY Modeling

1-94

% VHT sounding (NDP) configuration, for same number of streams
cfgVHTNDP = wlanVHTConfig('ChannelBandwidth', chanBW,...
 'NumUsers', 1, ...
 'NumTransmitAntennas', numTx, ...
 'GroupID', 0, ...
 'NumSpaceTimeStreams', sum(numSTSVec),...
 'MCS', 0, ...
 'APEPLength', 0);

The number of streams specified is the sum total of all space-time streams used. This allows the
complete channel to be sounded.

% Generate the null data packet, with no data
txNDPSig = wlanWaveformGenerator([], cfgVHTNDP);

Transmission Channel

The TGac multi-user channel consists of independent single-user MIMO channels between the access
point and spatially separated stations [3]. In this example, the same delay profile Model-A channel is
applied for each of the users, even though individual users can experience different conditions. The
flat-fading channel allows a simpler receiver without front-end synchronization. It is also assumed
that each user's number of receive antennas are equal to the number of space-time streams allocated
to them.

Cell arrays are used in the example to store per-user elements which allow for a flexible number of
users. Here, as an example, each instance of the TGac channel per user is stored as an element of a
cell array.

% Create three independent channels
TGAC = cell(numUsers, 1);
chanSeeds = [1111 2222 3333 4444]; % chosen for a maximum of 4 users
uIndex = [10 5 2 1]; % chosen for a maximum of 4 users
chanDelay = zeros(numUsers, 1);
for uIdx = 1:numUsers
 TGAC{uIdx} = wlanTGacChannel(...
 'ChannelBandwidth', cfgVHTMU.ChannelBandwidth,...
 'DelayProfile', chanMdl, ...
 'UserIndex', uIndex(uIdx), ...
 'NumTransmitAntennas', numTx, ...
 'NumReceiveAntennas', numSTSVec(uIdx), ...
 'RandomStream', 'mt19937ar with seed', ...
 'Seed', chanSeeds(uIdx),...
 'SampleRate', wlanSampleRate(cfgVHTMU), ...
 'TransmitReceiveDistance',5);
 chanInfo = info(TGAC{uIdx});
 chanDelay(uIdx) = chanInfo.ChannelFilterDelay;
end

The channels for each individual user use different seeds for random number generation. A different
user index is specified to allow for random angle offsets to be applied to the arrival (AoA) and
departure (AoD) angles for the clusters. The channel filtering delay is stored to allow for its
compensation at the receiver. In practice, symbol timing estimation would be used.

% Append zeroes to allow for channel filter delay
txNDPSig = [txNDPSig; zeros(10, numTx)];

% Sound the independent channels per user for all transmit streams

 802.11ac Multi-User MIMO Precoding

1-95

rxNDPSig = cell(numUsers, 1);
for uIdx = 1:numUsers
 rxNDPChan = TGAC{uIdx}(txNDPSig);

 % Add WGN per receiver
 rxNDPSig{uIdx} = awgn(rxNDPChan, snr);
end

Channel State Information Feedback

Each user estimates its own channel using the received NDP signal and computes the channel state
information that it can send back to the transmitter. This example uses the singular value
decomposition of the channel seen by each user to compute the CSI feedback.

mat = cell(numUsers,1);
for uIdx = 1:numUsers
 % Compute the feedback matrix based on received signal per user
 mat{uIdx} = vhtCSIFeedback(rxNDPSig{uIdx}(chanDelay(uIdx)+1:end,:), cfgVHTNDP);
end

Assuming perfect feedback, with no compression or quantization loss of the CSI, the transmitter
computes the steering matrix for the data transmission using either Zero-Forcing or Minimum-Mean-
Square-Error (MMSE) based precoding techniques. Both methods attempt to cancel out the intra-
stream interference for the user of interest and interference due to other users. The MMSE-based
approach avoids the noise enhancement inherent in the zero-forcing technique. As a result, it
performs better at low SNRs.

% Pack the per user CSI into a matrix
numST = length(mat{1}); % Number of subcarriers
steeringMatrix = zeros(numST, sum(numSTSVec), sum(numSTSVec));
% Nst-by-Nt-by-Nsts
for uIdx = 1:numUsers
 stsIdx = sum(numSTSVec(1:uIdx-1))+(1:numSTSVec(uIdx));
 steeringMatrix(:,:,stsIdx) = mat{uIdx}; % Nst-by-Nt-by-Nsts
end

% Zero-forcing or MMSE precoding solution
if strcmp(precodingType, 'ZF')
 delta = 0; % Zero-forcing
else
 delta = (numTx/(10^(snr/10))) * eye(numTx); % MMSE
end
for i = 1:numST
 % Channel inversion precoding
 h = squeeze(steeringMatrix(i,:,:));
 steeringMatrix(i,:,:) = h/(h'*h + delta);
end

% Set the spatial mapping based on the steering matrix
cfgVHTMU.SpatialMapping = 'Custom';
cfgVHTMU.SpatialMappingMatrix = permute(steeringMatrix,[1 3 2]);

Data Transmission

Random bits are used as the payload for the individual users. A cell array is used to hold the data bits
for each user, txDataBits. For a multi-user transmission the individual user payloads are padded
such that the transmission duration is the same for all users. This padding process is described in

1 PHY Modeling

1-96

Section 9.12.6 of [1]. In this example for simplicity the payload is padded with zeros to create a
PSDU for each user.

% Create data sequences, one for each user
txDataBits = cell(numUsers, 1);
psduDataBits = cell(numUsers, 1);
for uIdx = 1:numUsers
 % Generate payload for each user
 txDataBits{uIdx} = randi([0 1], cfgVHTMU.APEPLength(uIdx)*8, 1, 'int8');

 % Pad payload with zeros to form a PSDU
 psduDataBits{uIdx} = [txDataBits{uIdx}; ...
 zeros((cfgVHTMU.PSDULength(uIdx)-cfgVHTMU.APEPLength(uIdx))*8, 1, 'int8')];
end

Using the format configuration, cfgVHTMU, with the steering matrix, the data is transmitted over the
fading channel.

% Generate the multi-user VHT waveform
txSig = wlanWaveformGenerator(psduDataBits, cfgVHTMU);

% Transmit through per-user fading channel
rxSig = cell(numUsers, 1);
for uIdx = 1:numUsers
 % Append zeroes to allow for channel filter delay
 rxSig{uIdx} = TGAC{uIdx}([txSig; zeros(10, numTx)]);
end

Data Recovery Per User

The receive signals for each user are processed individually. The example assumes that there are no
front-end impairments and that the transmit configuration is known by the receiver for simplicity.

A user number specifies the user of interest being decoded for the transmission. This is also used to
index into the vector properties of the configuration object that are user-specific.

% Get field indices from configuration, assumed known at receiver
ind = wlanFieldIndices(cfgVHTMU);

% Single-user receivers recover payload bits
rxDataBits = cell(numUsers, 1);
scaler = zeros(numUsers, 1);
spAxes = gobjects(sum(numSTSVec), 1);
hfig = figure('Name','Per-stream equalized symbol constellation');
for uIdx = 1:numUsers
 % Add WGN per receiver
 rxNSig = awgn(rxSig{uIdx}, snr);
 rxNSig = rxNSig(chanDelay(uIdx)+1:end, :);

 % User space-time streams
 stsU = numSTSVec(uIdx);

 % Perform channel estimation based on VHT-LTF
 rxVHTLTF = rxNSig(ind.VHTLTF(1):ind.VHTLTF(2),:);
 demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF, chanBW, numSTSVec);
 [chanEst, chanEstSSPilots] = wlanVHTLTFChannelEstimate(demodVHTLTF, chanBW, numSTSVec);

 % Extract VHT Data samples from the waveform

 802.11ac Multi-User MIMO Precoding

1-97

 rxVHTData = rxNSig(ind.VHTData(1):ind.VHTData(2),:);

 % Estimate the noise power in VHT data field
 nVar = vhtNoiseEstimate(rxVHTData,chanEstSSPilots,cfgVHTMU);

 % Recover information bits in VHT Data field
 [rxDataBits{uIdx}, ~, eqsym] = wlanVHTDataRecover(rxVHTData, ...
 chanEst, nVar, cfgVHTMU, uIdx, 'EqualizationMethod', eqMethod, ...
 'PilotPhaseTracking', 'None', 'LDPCDecodingMethod', 'norm-min-sum');

 % Plot equalized symbols for all streams per user
 scaler(uIdx) = ceil(max(abs([real(eqsym(:)); imag(eqsym(:))])));
 for i = 1:stsU
 subplot(numUsers, max(numSTSVec), (uIdx-1)*max(numSTSVec)+i);
 plot(reshape(eqsym(:,:,i), [], 1), '.');
 axis square
 spAxes(sum([0 numSTSVec(1:(uIdx-1))])+i) = gca; % Store axes handle
 title(['User ' num2str(uIdx) ', Stream ' num2str(i)]);
 grid on;
 end
end

% Scale axes for all subplots and scale figure
for i = 1:numel(spAxes)
 xlim(spAxes(i),[-max(scaler) max(scaler)]);
 ylim(spAxes(i),[-max(scaler) max(scaler)]);
end
pos = get(hfig, 'Position');
set(hfig, 'Position', [pos(1)*0.7 pos(2)*0.7 1.3*pos(3) 1.3*pos(4)]);

1 PHY Modeling

1-98

Per-stream equalized symbol constellation plots validate the simulation parameters and convey the
effectiveness of the technique. Note the discernible 16QAM, 64QAM and QPSK constellations per
user as specified on the transmit end. Also observe the EVM degradation over the different streams
for an individual user. This is a representative characteristic of the channel inversion technique.

The recovered data bits are compared with the transmitted payload bits to determine the bit error
rate.

% Compare recovered bits against per-user APEPLength information bits
ber = inf(1, numUsers);
for uIdx = 1:numUsers
 idx = (1:cfgVHTMU.APEPLength(uIdx)*8).';
 [~, ber(uIdx)] = biterr(txDataBits{uIdx}(idx), rxDataBits{uIdx}(idx));
 disp(['Bit Error Rate for User ' num2str(uIdx) ': ' num2str(ber(uIdx))]);
end

rng(s); % Restore RNG state

Bit Error Rate for User 1: 0.00013228
Bit Error Rate for User 2: 0
Bit Error Rate for User 3: 0

 802.11ac Multi-User MIMO Precoding

1-99

The small number of bit errors, within noise variance, indicate successful data decoding for all
streams for each user, despite the variation in EVMs seen in individual streams.

Conclusion and Further Exploration

The example shows multi-user transmit configuration, independent per-user channel modeling, and
the individual receive processing using the channel inversion precoding techniques.

Further exploration includes modifications to the transmission and channel parameters, alternate
precoding techniques, more realistic receivers and feedback mechanism incorporating delays and
quantization.

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 Perahia, E., R. Stacey, "Next Generation Wireless LANS: 802.11n and 802.11ac", Cambridge
University Press, 2013.

3 Breit, G., H. Sampath, S. Vermani, et al., "TGac Channel Model Addendum", Version 12. IEEE
802.11-09/0308r12, March 2010.

1 PHY Modeling

1-100

MAC Modeling

2

802.11 MAC Frame Generation

This example shows how to generate IEEE® 802.11™ MAC frames.

Introduction

This example shows how to generate WLAN MAC frames, specified in section 9 of [1] and [2], and
export these frames to a packet capture (PCAP) file for analysis with third-party packet analysis tools.

The general MAC frame format consists of a header, frame-body, and frame check sequence (FCS).
The header holds information about the frame. The frame-body carries data that needs to be
transmitted. The transmitter calculates the FCS over the header and frame-body. The receiver uses
the FCS to confirm that the header and frame-body are properly formed. This diagram shows the
structure of a general MAC frame.

2 MAC Modeling

2-2

For more information, see the “WLAN MAC Frame Structure” topic.

You can use the wlanMACFrame function to generate MAC frames. This function accepts a MAC
frame configuration object wlanMACFrameConfig as an input. This object configures the fields in the
MAC header. Set the FrameType property to the desired Subtype description in Table 9-1 of [1] to set
the appropriate Type and Subtype fields in the MAC header. The wlanMACFrame function supports
the generation of these MPDUs.

• Management Frames: Beacon
• Data Frames: Data, Null, QoS Data, QoS Null
• Control Frames: RTS, CTS, Ack, Block Ack

In addition to these MPDUs, wlanMACFrame also supports generation of A-MPDUs containing
MPDUs of type QoS Data.

Control Frame Generation

To generate an RTS frame, create a MAC frame configuration object with the FrameType set to
'RTS'.

rtsCfg = wlanMACFrameConfig('FrameType', 'RTS');
disp(rtsCfg);

 802.11 MAC Frame Generation

2-3

 wlanMACFrameConfig with properties:

 FrameType: 'RTS'
 PowerManagement: 0
 MoreData: 0
 Duration: 0
 Address1: 'FFFFFFFFFFFF'
 Address2: '00123456789B'

 Read-only properties:
 Decoded: 0

Configure the frame header fields.

% Duration
rtsCfg.Duration = 500;
% Receiver address
rtsCfg.Address1 = 'FCF8B0102001';
% Transmitter address
rtsCfg.Address2 = 'FCF8B0102002';

Generate an RTS frame using the configuration.

% Generate octets for an RTS frame
rtsFrame = wlanMACFrame(rtsCfg);

By default, the output of wlanMACFrame is a sequence of hexadecimal octets. If you want to generate
the MAC frame as a sequence of bits, set the OutputFormat parameter to bits.

% Generate bits for an RTS frame
rtsFrameBits = wlanMACFrame(rtsCfg, 'OutputFormat', 'bits');

Data Frame Generation

To generate a QoS Data frame, create a MAC frame configuration object with the FrameType set to
'QoS Data'.

qosDataCfg = wlanMACFrameConfig('FrameType', 'QoS Data');
disp(qosDataCfg);

 wlanMACFrameConfig with properties:

 FrameType: 'QoS Data'
 FrameFormat: 'Non-HT'
 ToDS: 0
 FromDS: 1
 Retransmission: 0
 PowerManagement: 0
 MoreData: 0
 Duration: 0
 Address1: 'FFFFFFFFFFFF'
 Address2: '00123456789B'
 Address3: '00123456789B'
 SequenceNumber: 0
 TID: 0
 AckPolicy: 'No Ack'
 MSDUAggregation: 0
 EOSP: 0

2 MAC Modeling

2-4

 IsMeshFrame: 0

 Read-only properties:
 Decoded: 0

Configure the frame header fields.

% From DS flag
qosDataCfg.FromDS = 1;
% To DS flag
qosDataCfg.ToDS = 0;
% Acknowledgment Policy
qosDataCfg.AckPolicy = 'Normal Ack';
% Receiver address
qosDataCfg.Address1 = 'FCF8B0102001';
% Transmitter address
qosDataCfg.Address2 = 'FCF8B0102002';

The QoS Data frame is used to transmit a payload from higher-layer. A 20-byte payload containing a
repeating sequence of hexadecimal value '11' is used in this example.

payload = repmat('11', 1, 20);

Generate a QoS Data frame using payload and configuration.

% Generate octets for a QoS Data frame
qosDataFrame = wlanMACFrame(payload, qosDataCfg);

By default, the output of wlanMACFrame is a sequence of hexadecimal octets. If you want to generate
the MAC frame as a sequence of bits, set the OutputFormat parameter to bits.

% Generate bits for a QoS Data frame
qosDataFrameBits = wlanMACFrame(payload, qosDataCfg, 'OutputFormat', 'bits');

The output MAC frame is an MPDU with a single MSDU. For more information about A-MSDU and A-
MPDU generation, see “802.11ac Waveform Generation with MAC Frames” on page 2-18.

Management Frame Generation

To generate a Beacon frame, create a MAC frame configuration object with the FrameType set to
'Beacon'.

beaconCfg = wlanMACFrameConfig('FrameType', 'Beacon');
disp(beaconCfg);

 wlanMACFrameConfig with properties:

 FrameType: 'Beacon'
 ToDS: 0
 FromDS: 1
 Retransmission: 0
 PowerManagement: 0
 MoreData: 0
 Duration: 0
 Address1: 'FFFFFFFFFFFF'
 Address2: '00123456789B'
 Address3: '00123456789B'

 802.11 MAC Frame Generation

2-5

 SequenceNumber: 0
 ManagementConfig: [1x1 wlanMACManagementConfig]

 Read-only properties:
 Decoded: 0

Beacon frame-body consists of information fields and information elements as explained in section
9.3.3.2 of [1]. You can configure these information fields and elements using
wlanMACManagementConfig.

% Create a management frame-body configuration object
frameBodyCfg = wlanMACManagementConfig;
disp(frameBodyCfg);

 wlanMACManagementConfig with properties:

 FrameType: 'Beacon'
 Timestamp: 0
 BeaconInterval: 100
 ESSCapability: 1
 IBSSCapability: 0
 Privacy: 0
 ShortPreamble: 0
 SpectrumManagement: 0
 QoSSupport: 1
 ShortSlotTimeUsed: 0
 APSDSupport: 0
 RadioMeasurement: 0
 DelayedBlockAckSupport: 0
 ImmediateBlockAckSupport: 0
 SSID: 'default SSID'
 BasicRates: {'6 Mbps' '12 Mbps' '24 Mbps'}
 AdditionalRates: {}

 Read-only properties:
 InformationElements: {511x2 cell}

Configure the information fields and elements in the frame-body configuration. You can add
information elements using addIE(elementID, information) method as shown below. Section
9.4 in [1] lists the information fields and information elements.

% Beacon Interval
frameBodyCfg.BeaconInterval = 100;
% Timestamp
frameBodyCfg.Timestamp = 123456;
% SSID
frameBodyCfg.SSID = 'TEST_BEACON';
% Add DS Parameter IE (element ID - 3) with channel number 11 (0x0b)
frameBodyCfg = frameBodyCfg.addIE(3, '0b');

Assign the updated frame-body configuration object to the ManagementConfig property in the MAC
frame configuration.

% Update management frame-body configuration
beaconCfg.ManagementConfig = frameBodyCfg;

Generate the Beacon frame with the updated frame configuration.

2 MAC Modeling

2-6

% Generate octets for a Beacon frame
beaconFrame = wlanMACFrame(beaconCfg);

By default, the output of wlanMACFrame is a sequence of hexadecimal octets. If you want to generate
the MAC frame as a sequence of bits, set the OutputFormat parameter to bits.

% Generate bits for a Beacon frame
beaconFrameBits = wlanMACFrame(beaconCfg, 'OutputFormat', 'bits');

Export WLAN MAC Frames to PCAP or PCAPNG File

The packet capture (PCAP) or packet capture next generation (PCAPNG) file (.pcap or .pcapng,
respectively) is a widely used packet capture file format to perform packet analysis.

To capture the packet characteristics, export the generated MAC frames to a PCAP or PCAPNG file by
using the wlanPCAPWriter object. You can visualize and analyze the PCAP or PCAPNG file by using
a third-party packet analyzer tool such as Wireshark.

Specify the name and extension of the PCAP file. To export the MAC frames to a PCAPNG file, set the
file extension to 'pcapng'.

fileName = 'macFrames';
fileExtension = 'pcap';

If a file with the fileName name already exists in the current directory, delete the existing file.

if isfile(strcat(fileName, '.', fileExtension))
 delete(strcat(fileName, '.', fileExtension));
end

Set the packet arrival time in POSIX® microseconds.

timestamp = 124800;

Create a WLAN PCAP file writer object with the specified file name and extension by using the
wlanPCAPWriter object.

pcap = wlanPCAPWriter('FileName', fileName, 'FileExtension', fileExtension);

Specify the MAC frames to be exported to the PCAP file.

frames = {rtsFrame, qosDataFrame, beaconFrame};

Write the MAC frames to the PCAP file.

for idx = 1:numel(frames)
 write(pcap, frames{idx}, timestamp);
end

Delete the PCAP file writer object.

delete(pcap);

Visualization of the Generated MAC Frames

You can open the PCAP files containing the generated MAC frames in a packet analyzer. The frames
decoded by Wireshark match the standard compliant MAC frames generated using the WLAN
Toolbox. This figure shows the analysis of the captured MAC frames in Wireshark.

 802.11 MAC Frame Generation

2-7

• RTS frame

• QoS Data frame

2 MAC Modeling

2-8

• Beacon frame

 802.11 MAC Frame Generation

2-9

Conclusion and Further Exploration

This example shows how to generate MAC frames for the IEEE 802.11 standard. You can use a packet
analyzer to view the generated MAC frames. To transmit the generated MAC frames over the air, see
“802.11 OFDM Beacon Frame Generation” on page 2-25 and “802.11ac Waveform Generation with
MAC Frames” on page 2-18.

References
[1] IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016). “Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for
Information Technology — Telecommunications and Information Exchange between Systems
— Local and Metropolitan Area Networks — Specific Requirements.

[2] IEEE Std 802.11ax-2021 (Amendment to IEEE Std 802.11-2020). “Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 1: Enhancements

2 MAC Modeling

2-10

for High Efficiency WLAN.” IEEE Standard for Information technology — Telecommunications
and information exchange between systems. Local and metropolitan area networks — Specific
requirements.

[3] Wireshark · Go Deep. https://www.wireshark.org/. Accessed 30 June 2020

[4] Group, The Tcpdump. Tcpdump/Libpcap Public Repository. https://www.tcpdump.org. Accessed 30
June 2020

See Also

More About
• “WLAN MAC Frame Structure”
• “802.11ac Waveform Generation with MAC Frames” on page 2-18
• “802.11 MAC Frame Decoding” on page 2-12

 802.11 MAC Frame Generation

2-11

https://www.wireshark.org/
https://www.tcpdump.org

802.11 MAC Frame Decoding

This example shows how to decode IEEE® 802.11™ MAC frames.

Background

The general MAC frame format consists of a header, frame-body, and frame check sequence (FCS).
The header holds information about the frame. The frame-body carries data that needs to be
transmitted. The transmitter calculates the FCS over the header and frame-body. The receiver uses
the FCS to confirm that the header and frame-body are properly received. The following diagram
shows the structure of a general MAC frame.

For more information, see the “WLAN MAC Frame Structure” topic.

Introduction

This example shows how WLAN MAC frames specified in Section 9.3 of [1] or [2] can be decoded.
It also shows how aggregated MAC frames specified in Section 9.7 of [1] or [2] can be
deaggregated.

WLAN Toolbox™ supports MPDU decoding for the following MAC frames:

2 MAC Modeling

2-12

• Management Frames: Beacon
• Data Frames: Data, Null, QoS Data, QoS Null
• Control Frames: RTS, CTS, Ack, Block Ack

In addition to MPDU decoding, WLAN Toolbox also supports deaggregation of an A-MPDU.

MPDU Decoding

An MPDU can be a data, control or management frame type. wlanMPDUDecode can be used to
decode an MPDU. This function processes the given MPDU and a physical layer configuration object
to output the decoded MAC parameters.

To illustrate MPDU decoding, a valid MPDU is created using wlanMACFrame. The created MPDU is
passed to the wlanMPDUDecode function and the outputs are observed.

Create an MPDU

A QoS Data frame is created for this example using wlanMACFrame. The following inputs are
required to form a Non-HT format QoS Data frame containing a 40-octet payload:

1 txFrameCfg : A MAC frame configuration object of type wlanMACFrameConfig.
2 txMSDU : A 40-octet payload (MSDU) to be included in the QoS Data frame.

% Create a MAC frame configuration object
txFrameCfg = wlanMACFrameConfig('FrameType', 'QoS Data', ...
 'FrameFormat', 'Non-HT');

% 40-octet payload for each 'QoS Data' frame
txMSDU = randi([0, 255], 40, 1);

% Physical layer configuration
phyCfg = wlanNonHTConfig;

% Create the MPDU
mpdu = wlanMACFrame(txMSDU, txFrameCfg);

Decode the MPDU

wlanMPDUDecode consumes an MPDU, a PHY configuration object of type wlanNonHTConfig,
wlanHTConfig, wlanVHTConfig, or wlanHESUConfig and optionally a (Name, Value) pair for
DataFormat specifying the input format of the MPDU. Since the MPDU generated using
wlanMACFrame is in terms of octets, DataFormat is set to octets. wlanMPDUDecode decodes the
MPDU and outputs the following information:

 802.11 MAC Frame Decoding

2-13

1 rxFrameCfg : A MAC frame configuration object of type wlanMACFrameConfig, containing the
decoded MAC parameters.

2 rxMSDU : A cell array, where each element is an n-by-2 character array representing the decoded
MSDU. Multiple MSDUs are returned when the MPDU contains an aggregated MSDU (A-MSDU)
as the payload.

3 status : An enumeration of type “status”, which indicates whether the MPDU decoding was
successful.

% Decode the MPDU.
[rxFrameCfg, rxMSDU, status] = wlanMPDUDecode(mpdu, phyCfg, ...
 'DataFormat', 'octets');

% Check if the MPDU is decoded successfully
disp(['Status of the MPDU decoding: ' char(status)])

% Observe the outputs, if the MPDU is decoded successfully
if strcmp(status, 'Success')
 disp(['Type of the decoded MPDU: ' rxFrameCfg.FrameType])
 disp(['Number of MSDUs in the MPDU: ' num2str(numel(rxMSDU))])
 for i = 1:numel(rxMSDU)
 disp(['Size of MSDU-' num2str(i) ': ' num2str(size(rxMSDU{i}, 1)) ' octets'])
 end
end

Status of the MPDU decoding: Success
Type of the decoded MPDU: QoS Data
Number of MSDUs in the MPDU: 1
Size of MSDU-1: 40 octets

A-MPDU Deaggregation

An A-MPDU is an aggregation of multiple MPDUs. The type of MPDUs in an A-MPDU are restricted as
specified in Section 9.7.3 of [1].

wlanAMPDUDeaggregate can be used to deaggregate an A-MPDU. This function processes the given
A-MPDU and the corresponding physical layer configuration object to output the deaggregated list of
MPDUs. wlanAMPDUDeaggregate is capable of decoding HT (High Throughput), VHT (Very High
Throughput), HE-SU (High Efficiency Single User) and HE-EXT-SU (High Efficiency Extended Range
Single User) format A-MPDUs as specified in [1] and [2].

To illustrate the A-MPDU deaggregation, a valid A-MPDU containing five MPDUs is created using
wlanMACFrame. The created A-MPDU is passed to the wlanAMPDUDeaggregate function and the
outputs are observed.

2 MAC Modeling

2-14

Create an A-MPDU

The following inputs are required to form an HE-SU format A-MPDU containing five MPDUs (QoS
Data frames), each MPDU containing a 40-octet payload:

1 txFrameCfg : A MAC frame configuration object of type wlanMACFrameConfig.
2 txMSDUList : A five element cell array containing payload (MSDU) for five MPDUs. Since

MSDUAggregation is set to false in the txFrameCfg, a separate MPDU is created for each
MSDU.

3 phyCfg : A physical layer configuration object of type wlanHESUConfig.

% Create a MAC frame configuration object
txFrameCfg = wlanMACFrameConfig('FrameType', 'QoS Data', ...
 'FrameFormat', 'HE-SU', ...
 'MPDUAggregation', true, ...
 'MSDUAggregation', false);

% 40-octet payload for each 'QoS Data' frame
txMSDUList = repmat({randi([0, 255], 40, 1)}, 1, 5);

% Physical layer configuration
phyCfg = wlanHESUConfig('MCS', 3);

% Create the A-MPDU containing 5 MPDUs
ampdu = wlanMACFrame(txMSDUList, txFrameCfg, phyCfg);

Deaggregate the A-MPDU

wlanAMPDUDeaggregate consumes an A-MPDU, a PHY configuration object of type wlanHTConfig,
wlanVHTConfig, or wlanHESUConfig and optionally a (Name, Value) pair for DataFormat
specifying the input format of the A-MPDU. It finds and validates the MPDU delimiters, extracts the
MPDUs and outputs the following information that can be used for further processing the MPDUs:

1 mpduList : A cell array containing the list of MPDUs extracted from the A-MPDU.
2 delimCRCFails : A logical row vector representing delimiter CRC validity for the corresponding

index in mpduList. A value of true represents that the MPDU present in mpduList at the
corresponding index may not be properly extracted.

3 ampduStatus : An enumeration of type “status”, which indicates whether the A-MPDU
deaggregation was successful.

 802.11 MAC Frame Decoding

2-15

% Deaggregate the A-MPDU
[mpduList, delimCRCFails, ampduStatus] = wlanAMPDUDeaggregate(ampdu, phyCfg, ...
 'DataFormat', 'octets');

% Observe the outputs
disp(['Status of A-MPDU deaggregation: ' char(ampduStatus)])
disp(['Number of MPDUs extracted from the A-MPDU: ' num2str(numel(mpduList))])
disp(['Number of MPDUs with delimiter CRC fails: ' num2str(nnz(delimCRCFails))])

Status of A-MPDU deaggregation: Success
Number of MPDUs extracted from the A-MPDU: 5
Number of MPDUs with delimiter CRC fails: 0

Decode the list of MPDUs

The mpduList contains the list of MPDUs extracted from the A-MPDU. Each of the MPDUs present in
the list can be decoded separately. However, if the delimCRCFails contains any true values, the
MPDU present in mpduList at the corresponding index can be considered invalid as it may not be
properly extracted because of the delimiter CRC failure.

% Decode the list of MPDUs
if strcmp(ampduStatus, 'Success')
 % Number of MPDUs in the list
 numMPDUs = numel(mpduList);

 for i = 1:numMPDUs
 % Decode the MPDU only if the corresponding delimiter CRC is valid
 if ~delimCRCFails(i)
 [rxFrameCfg, rxMSDU, mpduStatus] = wlanMPDUDecode(mpduList{i}, phyCfg, ...
 'DataFormat', 'octets');
 disp(['MPDU-' num2str(i) ' decoding status: ' char(mpduStatus)])
 disp(['MPDU-' num2str(i) ' type: ' rxFrameCfg.FrameType])
 disp(['MPDU-' num2str(i) ' payload size: ' num2str(size(rxMSDU{1}, 1)) ' octets'])
 disp(' ')
 end
 end
end

MPDU-1 decoding status: Success
MPDU-1 type: QoS Data
MPDU-1 payload size: 40 octets

MPDU-2 decoding status: Success
MPDU-2 type: QoS Data
MPDU-2 payload size: 40 octets

MPDU-3 decoding status: Success
MPDU-3 type: QoS Data
MPDU-3 payload size: 40 octets

MPDU-4 decoding status: Success
MPDU-4 type: QoS Data
MPDU-4 payload size: 40 octets

MPDU-5 decoding status: Success
MPDU-5 type: QoS Data
MPDU-5 payload size: 40 octets

2 MAC Modeling

2-16

Conclusion and Further Exploration

This example demonstrated how to deaggregate and decode IEEE 802.11 MAC frames. You can also
explore “OFDM Beacon Receiver Using Software-Defined Radio” on page 10-33 and “Recovery
Procedure for an 802.11ac Packet” on page 4-30 examples for decoding the MAC frames retrieved
from the captured waveforms.

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

 802.11 MAC Frame Decoding

2-17

802.11ac Waveform Generation with MAC Frames

This example shows how to generate an IEEE® 802.11ac™ transmission containing MAC frames
suitable for performing radio packet error rate (PER) receiver tests.

Introduction

WLAN Toolbox™ can be used to generate standard compliant waveforms for performing receiver
tests. A basic WLAN receiver test scenario is shown in the diagram below.

The device under test (DUT) is stimulated with RF test vectors, usually through a wired link. The
packet error rate (PER) is a metric used to test the performance of a receiver at a given receive
signal power in the presence of noise, interference, or other impairments. The PER is defined as the
number of incorrectly decoded packets divided by the total number of transmitted packets.

The frame check sequence (FCS) within a MAC frame is used to determine whether a MAC frame has
been decoded correctly by the receiver, and therefore whether the packet has been received in error.
The general MAC frame for IEEE 802.11ac contains the following fields:

• MAC header
• Frame body
• FCS

The data to transmit from a higher layer is contained within the frame body of the MAC frame. The
transmitter uses a cyclic redundancy check over the MAC header and frame body field to generate
the FCS value. The receiver calculates the CRC and compares this to the received FCS field to
determine if an error has occurred during transmission.

In this example an IEEE 802.11ac waveform consisting of multiple VHT format packets is generated.
The wlanWaveformGenerator function can be used to generate a waveform containing one or more
packets. The wlanWaveformGenerator function consumes physical layer service data units (PSDUs)
for each packet and performs the appropriate physical layer processing to create the waveform. A
PSDU containing a MAC header and valid FCS can be generated using the wlanMACFrame function.
In this example a multi-packet baseband waveform containing MAC packets is synthesized. This
waveform may be downloaded to a signal generator for RF transmission and used for receiver PER
testing. Source code is provided to download and play the waveform using a Keysight Technologies™
N5172B signal generator. The example processing is illustrated in the following diagram:

2 MAC Modeling

2-18

802.11ac VHT Format Configuration

The format-specific configuration of a VHT waveform synthesized with the
wlanWaveformGenerator function is described by the VHT format configuration object,
wlanVHTConfig. The properties of the object contain the configuration. In this example an object is
configured for a 160 MHz bandwidth, 1 transmit antenna, 1 space-time stream and QPSK rate 1/2
(MCS 1).

vhtCfg = wlanVHTConfig; % Create packet configuration
vhtCfg.ChannelBandwidth = 'CBW160'; % 160 MHz channel bandwidth
vhtCfg.NumTransmitAntennas = 1; % 1 transmit antenna
vhtCfg.NumSpaceTimeStreams = 1; % 1 space-time stream
vhtCfg.MCS = 1; % Modulation: QPSK Rate: 1/2

Waveform Generation Configuration

The wlanWaveformGenerator function can be configured to generate one or more packets and add
an idle time between each packet. The function can be configured to generate an oversampled or
nominal rate waveform. In this example four oversampled packets with a 20 microsecond idle period
will be created.

numPackets = 4; % Generate 4 packets
idleTime = 20e-6; % 20 microseconds idle period after packet
oversamplingFactor = 1.5; % Oversample waveform 1.5x nominal baseband rate

The PSDU transmitted in each packet is scrambled using a random seed for each packet. This is
accomplished by specifying a vector of scrambler initialization seeds. The valid range of the seed is
between 1 and 127 inclusive.

% Initialize the scrambler with a random integer for each packet
scramblerInitialization = randi([1 127],numPackets,1);

Create a PSDU for Each Packet

For an IEEE 802.11ac data transmission the MAC frame is termed a MAC protocol data unit (MPDU),
the MAC header is termed the MPDU header, and the frame body is an aggregated MAC service data
unit (A-MSDU). One or more MPDUs are delimited, padded and aggregated to create an aggregated
MPDU (A-MPDU). The A-MPDU is delimited and padded to form the physical layer service data unit
(PSDU) which is coded and modulated to create the transmitted packet. This process of encapsulation
is shown in the following diagram:

 802.11ac Waveform Generation with MAC Frames

2-19

In this example a PSDU is created containing a single MPDU for each packet. The MPDU consists of
an MPDU header, A-MSDU frame containing concatenated A-MSDU subframes with random data and
valid FCS. The wlanMACFrame function creates an A-MPDU with EOF delimiters and padding, i.e. the
PSDU, as specified in [1 on page 2-24]. It also returns the length of the A-MPDU, termed as the
APEP Length, which is used to set the APEPLength property of the VHT configuration object. A
PSDU is generated for each packet and is concatenated into a vector data for transmission with the
wlanWaveformGenerator function. The processing to create the concatenated PSDU bits data is
shown in the diagram below:

% Create frame configuration
macCfg = wlanMACFrameConfig('FrameType', 'QoS Data');
macCfg.FrameFormat = 'VHT'; % Frame format
macCfg.MSDUAggregation = true; % Form A-MSDUs internally
bitsPerByte = 8; % Number of bits in 1 byte
data = [];

for i=1:numPackets
 % Get MSDU lengths to create a random payload for forming an A-MPDU of
 % 4048 octets (pre-EOF padding)
 msduLengths = wlanMSDULengths(4048, macCfg, vhtCfg);
 msdu = cell(numel(msduLengths), 1);

 % Create MSDUs with the obtained lengths
 for j = 1:numel(msduLengths)
 msdu{j} = randi([0 255], 1, msduLengths(j));
 end

 % Generate PSDU bits containing A-MPDU with EOF delimiters and padding

2 MAC Modeling

2-20

 [psdu, apepLength] = wlanMACFrame(msdu, macCfg, vhtCfg, 'OutputFormat', 'bits');

 % Set the APEP length in the VHT configuration
 vhtCfg.APEPLength = apepLength;

 % Concatenate packet PSDUs for waveform generation
 data = [data; psdu]; %#ok<AGROW>
end

Generate a Baseband Waveform

The concatenated PSDU bits for all packets, data, are passed as an argument to the
wlanWaveformGenerator function along with the VHT packet configuration object vhtCfg. This
configures the waveform generator to synthesize an 802.11ac VHT waveform. To generate 802.11n™
HT or other format waveforms, use a different format configuration object, for example
wlanHTConfig or wlanNonHTConfig. The waveform generator is additionally configured using
name-value pairs to generate multiple oversampled packets with a specified idle time between
packets, and initial scrambler states.

% Generate baseband VHT packets
txWaveform = wlanWaveformGenerator(data,vhtCfg, ...
 'NumPackets',numPackets,'IdleTime',idleTime, ...
 'ScramblerInitialization',scramblerInitialization, ...
 'OversamplingFactor',oversamplingFactor);

fs = wlanSampleRate(vhtCfg,'OversamplingFactor',oversamplingFactor);
disp(['Baseband sampling rate: ' num2str(fs/1e6) ' Msps']);

Baseband sampling rate: 240 Msps

The magnitude of the baseband waveform is displayed below. Note the number of packets and idle
time configured.

figure;
plot(abs(txWaveform));
xlabel('Sample index');
ylabel('Magnitude');
title('Baseband IEEE 802.11ac Waveform');
legend('Transmit antenna 1');

 802.11ac Waveform Generation with MAC Frames

2-21

View the frequency spectrum of the generated time domain waveform by using the “DSP System
Toolbox” spectrumAnalyzer. As expected, the 160 MHz signal bandwidth is clearly visible.

spectrumScope = spectrumAnalyzer;
spectrumScope.SampleRate = fs;
spectrumScope.SpectrumType = 'power-density';
spectrumScope.RBWSource = 'property';
spectrumScope.RBW = 100e3;
spectrumScope.AveragingMethod = 'exponential';
spectrumAnalyze.ForgettingFactor = 0.99;
spectrumScope.YLabel = 'PSD';
spectrumScope.Title = 'Baseband IEEE 802.11ac Waveform';
spectrumScope(txWaveform);
release(spectrumScope)

2 MAC Modeling

2-22

Generate Over-the-Air Signal Using an RF Signal Generator

The baseband waveform created by WLAN Toolbox can now be downloaded to a signal generator to
perform receiver tests. Use “Instrument Control Toolbox” to generate an RF signal with a center
frequency of 5.25 GHz RF using the Keysight Technologies N5172B signal generator.

% Control whether to download the waveform to the waveform generator
playOverTheAir = false;

% Download the baseband IQ waveform to the instrument. Generate the RF
% signal at a center frequency of 5.25 GHz and output power of -10 dBm.
if playOverTheAir
 fc = 5.25e9; %#ok<UNRCH> % Center frequency
 power = -10; % Output power
 loopCount = Inf; % Number time to loop

 % Configure the signal generator, download the waveform and loop
 rf = rfsiggen();
 rf.Resource = 'TCPIP0::192.168.0.1::inst0::INSTR';
 rf.Driver = 'AgRfSigGen';
 connect(rf); % Connect to the instrument
 download(rf,txWaveform.',fs); % Download the waveform to the instrument
 start(rf,fc,power,loopCount); % Start transmitting waveform

 % When you have finished transmitting, stop the waveform output
 stop(rf);

 802.11ac Waveform Generation with MAC Frames

2-23

 disconnect(rf);
end

Selected Bibliography

1 IEEE Std 802.11™-2016 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 MAC Modeling

2-24

802.11 OFDM Beacon Frame Generation

This example shows how to generate packets containing medium access control (MAC) beacon
frames suitable for baseband simulation or over-the-air transmission using a software-defined radio
(SDR) platform.

Introduction

In this example, you create an IEEE® 802.11™ beacon frame as described in section 9.3.3.3 of [1 on
page 2-28]. You can view the beacon packet transmitted using SDR by using A Wi-Fi device, as
shown in this figure.

A beacon frame is a type of management frame that identifies a basic service set (BSS) formed by
some 802.11 devices. The beacon frame consists of a MAC header, a beacon frame body and a valid
frame check sequence (FCS). The beacon frame body contains information fields that allow stations
to associate with the network.

You can store the generated waveform in a baseband file format.

You can also transmit the generated waveform over the air. Upconvert the beacon packet for RF
transmission using Xilinx® Zynq-Based Radio SDR hardware. The radio hardware can transmit the
waveform over the air.

 802.11 OFDM Beacon Frame Generation

2-25

Transmitting the beacon over the air requires the Xilinx Zynq-based radio support package, which
you can install with the Add-On Explorer. For more information about SDR platforms, see Hardware
Support: Communications Toolbox.

Example Setup

The beacon packet can be written to a baseband file and transmitted using an SDR platform. To
transmit the beacon using the SDR platform set useSDR to true. To write to a baseband file set
saveToFile to true.

useSDR = false;
saveToFile = false;

Create IEEE 802.11 Beacon Frame

A station (STA) periodically transmits beacon packets as specified by the target beacon transmission
time (TBTT) in the Beacon Interval field. The beacon interval represents the number of time units
(TUs) between TBTTs, where 1 TU represents 1024 microseconds. A beacon interval of 100 TUs
results in a 102.4 millisecond time interval between successive beacons. You can generate a beacon
frame by using the wlanMACFrame function with medium access control (MAC) frame configuration
object wlanMACFrameConfig and MAC frame-body configuration object
wlanMACManagementConfig.

Specify the network service set identifier (SSID), beacon interval, operating band, and channel
number.

ssid = "TEST_BEACON";
beaconInterval = 100;
band = 5;
chNum = 52;

Create a MAC frame-body configuration object, setting the SSID and Beacon Interval field value.

frameBodyConfig = wlanMACManagementConfig(...
 BeaconInterval=beaconInterval, ...
 SSID=ssid);

Add the DS Parameter information element (IE) to the frame body by using the addIE object
function.

dsElementID = 3;
dsInformation = dec2hex(chNum,2);
frameBodyConfig = frameBodyConfig.addIE(dsElementID,dsInformation);

Create beacon frame configuration object.

beaconFrameConfig = wlanMACFrameConfig(FrameType="Beacon", ...
 ManagementConfig=frameBodyConfig);

Generate beacon frame bits.

[mpduBits,mpduLength] = wlanMACFrame(beaconFrameConfig,OutputFormat="bits");

Calculate center frequency for the specified operating band and channel number.

fc = wlanChannelFrequency(chNum,band);

2 MAC Modeling

2-26

matlab:supportPackageInstaller
https://www.mathworks.com/hardware-support.html?fq=product:CM
https://www.mathworks.com/hardware-support.html?fq=product:CM

Create IEEE 802.11 Beacon Packet

Configure a non-HT beacon packet with the relevant PSDU length, specifying a channel bandwidth of
20 MHz, one transmit antenna, and BPSK modulation with a coding rate of 1/2 (corresponding to
MCS index 0) by using the wlanNonHTConfig object.

cfgNonHT = wlanNonHTConfig(PSDULength=mpduLength);

Generate an oversampled beacon packet by using the wlanWaveformGenerator function, specifying
an idle time.

osf = 2;
tbtt = beaconInterval*1024e-6;
txWaveform = wlanWaveformGenerator(mpduBits,cfgNonHT,...
 OversamplingFactor=osf,Idletime=tbtt);

Get the waveform sample rate.

Rs = wlanSampleRate(cfgNonHT,OversamplingFactor=osf);

Save Waveform to File

Save the waveform in a baseband file using the comm.BasebandFileWriter object.

if saveToFile
 bbw = comm.BasebandFileWriter("nonHTBeaconPacket.bb",Rs,fc); %#ok<UNRCH>
 bbw(txWaveform);
 release(bbw);
end

Transmission with an SDR Device

In this section, you transmit the beacon packet over the air using an SDR device.

if useSDR
 % The SDR platform must support transmitRepeat. Valid platforms are
 % 'AD936x' and 'FMCOMMS5'.
 sdrPlatform = 'AD936x'; %#ok<UNRCH>
 tx = sdrtx(sdrPlatform);
 tx.BasebandSampleRate = Rs;
 % Set the center frequency to the corresponding channel number
 tx.CenterFrequency = fc;
end

To impair the signal or reduce transmission quality of the waveform, you can adjust the transmitter
gain tx.Gain. This parameter, expressed in dB, drives the power amplifier in the radio. You can use
these suggested values, or select different values appropriate for your antenna configuration.

• For increased gain, set the tx.Gain parameter to 0.
• For default gain, set the tx.Gain parameter to -10.
• For reduced gain, set the tx.Gain parameter to -20.

Transfer the baseband waveform to the SDR platform by using the transmitRepeat function, and
then store the signal samples in hardware memory. The example then repeatedly transmits this
waveform over-the-air until the release method of the transmit object is called. Messages are
displayed in the command window to confirm that transmission has started successfully.

 802.11 OFDM Beacon Frame Generation

2-27

if useSDR
 % Set transmit gain
 tx.Gain = 0; %#ok<UNRCH>
 % Transmit over the air
 transmitRepeat(tx,txWaveform);
end

Conclusion and Further Exploration

This example shows how to generate a beacon packet for the IEEE 802.11 standard and view the
beacon packet transmitted using SDR hardware by using a Wi-Fi device. You can use the stored
baseband beacon packet to recover the transmitted information using the “OFDM Beacon Receiver
Using Software-Defined Radio” on page 10-33 example.

Related Examples

• “OFDM Beacon Receiver Using Software-Defined Radio” on page 10-33
• “Recover and Analyze Packets in 802.11 Waveform” on page 4-2
• “802.11 MAC Frame Generation” on page 2-2

References

1 IEEE Std 802.11™-2020 IEEE(Revision of IEEE Std 802.11-2016). “Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for
Information technology — Telecommunications and information exchange between systems.
Local and metropolitan area networks — Specific requirements.

2 MAC Modeling

2-28

Signal Transmission

3

802.11be Transmitter Measurements

This example demonstrates how to measure transmitter modulation accuracy, spectral mask, and
spectral flatness for IEEE® 802.11be™ waveforms.

Introduction

In this example, you generate an oversampled IEEE 802.11be extremely high throughput (EHT)
multi-user (MU) waveform, as defined in IEEE P802.11be/D2.0 [1 on page 3-12]. You can configure
the example to generate orthogonal frequency-division multiple-access (OFDMA) waveforms, which
transmit data for multiple users over different parts of the band, or non-OFDMA waveforms, which
transmit data for a single user over the whole band. You can also introduce in-band distortion and
spectral regrowth by using a high-power amplifier (HPA) model. You then perform the transmitter
modulation accuracy, required spectral mask, and required spectral flatness measurement on the
waveform for the measurement configuration specified in Section 36.3.19 of [1 on page 3-12].

For each user, the example decodes the EHT Data field and measures the error vector magnitude
(EVM) to determine the modulation accuracy after downsampling the waveform to baseband
sampling rate. Additionally, for the non-OFDMA PPDU type, the example measures the spectral
flatness of the recovered waveform. This diagram shows the example workflow.

Simulation Setup

Configure the example to generate two EHT MU packets with a 10 microsecond idle period between
each packet.

numPackets = ;

idleTime = ;

3 Signal Transmission

3-2

802.11be Waveform Configuration and Generation

The draft standard defines the EHT MU format for the transmission of non-OFDMA and OFDMA
PPDU types. This example supports generation of non-OFDMA and OFDMA EHT MU PPDU types. For
more information about the parameterization and generation of IEEE 802.11be EHT MU waveforms,
see the “802.11be Waveform Generation” on page 1-18 example.

savedState = rng(0); % Set random state

ppduType = ; % Set ppduType to OFDMA or Non-OFDMA

Configure transmission parameters of an EHT MU packet by using EHT MU configuration object
wlanEHTMUConfig For an OFDMA PPDU type, create an OFDMA configuration for a 20 MHz EHT
MU packet with allocation index 47 as defined in Table 36-34 of [1 on page 3-12]. This allocation has
two 52-tone resource units (RUs) and one 106+26-tone multiple resource unit (MRU). This
configuration specifies the transmission of a single user per RU. Set the transmission parameters for
each user.

if strcmp(ppduType,"OFDMA")
 allocationIndex = 47; % Allocation index 47 specifies three RUs and three users
 mcs = [12 5 4]; % Modulation and coding scheme per user
 spatialMapping = ["Direct" "Direct" "Direct"]; % Set spatial mapping property per RU
 apepLength = [1000 500 400]; % A-MPDU length pre-EOF padding in bytes per user
 numSTSs = [1 1 1]; % Number of space-time streams per user
 channelCoding = ["LDPC" "LDPC" "BCC"]; % Set channel coding property per user
 numTx = 1; % Number of transmit antennas

 cfgEHT = wlanEHTMUConfig(allocationIndex);
 chanBW = cfgEHT.ChannelBandwidth;
 numUsers = numel(cfgEHT.User);
 cfgEHT.NumTransmitAntennas = numTx;
 for i = 1:numUsers
 cfgEHT.RU{i}.SpatialMapping = spatialMapping(i);
 cfgEHT.User{i}.APEPLength = apepLength(i);
 cfgEHT.User{i}.MCS = mcs(i);
 cfgEHT.User{i}.NumSpaceTimeStreams = numSTSs(i);
 cfgEHT.User{i}.ChannelCoding = channelCoding(i);
 end
end

For the non-OFDMA PPDU type, create a full-band 320 MHz single-user (SU) MIMO configuration
and set the transmission parameters of the user.

if strcmp(ppduType,"Non-OFDMA")
 chanBW = "CBW320"; % Channel bandwidth
 mcs = 12; % Modulation and coding scheme
 apepLength = 8000; % A-MPDU length pre-EOF padding in bytes
 numTx = 1; % Number of transmit antennas

 cfgEHT = wlanEHTMUConfig(chanBW); % EHT MU configuration object
 numUsers = numel(cfgEHT.User);
 cfgEHT.NumTransmitAntennas = numTx;
 cfgEHT.RU{1}.SpatialMapping = "Direct";
 cfgEHT.User{1}.APEPLength = apepLength;
 cfgEHT.User{1}.MCS = mcs;
 cfgEHT.User{1}.NumSpaceTimeStreams = numTx;
 cfgEHT.User{1}.ChannelCoding = "LDPC";
end

 802.11be Transmitter Measurements

3-3

To model the effect of an HPA on the waveform and view the out-of-band spectral emissions, the
waveform must be oversampled. Generate the waveform using a larger IFFT than required for the
nominal baseband rate, resulting in an oversampled waveform.

osf = ; % Oversampling factor

Create random bits for all packets.

psduLen = psduLength(cfgEHT).*8;
data = cell(1,numUsers);
for i=1:numUsers
 data{i} = randi([0 1],psduLen(i)*numPackets,1);
end

Generate the EHT MU waveform for the specified bits and configuration by using the
wlanWaveformGenerator function, specifying the desired oversampling factor, number of packets,
and idle time between each packet.

txWaveform = wlanWaveformGenerator(data,cfgEHT, ...
NumPackets=numPackets,IdleTime=idleTime*1e-6, ...
OversamplingFactor=osf);

Get the baseband sampling rate of the waveform.

fs = wlanSampleRate(chanBW);
disp(['Baseband sampling rate: ' num2str(fs/1e6) ' Msps']);

Baseband sampling rate: 20 Msps

Prepend zeros to the waveform to allow for early timing synchronization.

txWaveform = [zeros(round(idleTime*1e-6*fs),numTx); txWaveform];

Add Impairments

HPA Modeling

The HPA introduces nonlinear behavior in the form of in-band distortion and spectral regrowth. This
example simulates the power amplifiers by using the Rapp model [3 on page 3-12], which introduces
AM/AM distortion.

Model the amplifier by using the dsp.FIRInterpolator object and configure reduced distortion by
specifying a backoff, hpaBackoff, such that the amplifier operates below its saturation point. You
can increase the backoff to reduce EVM for higher MCS values.

pSaturation = 25; % Saturation power of a power amplifier in dBm
hpaBackoff = 16; % Power amplifier backoff in dB
nonLinearity = comm.MemorylessNonlinearity;
nonLinearity.Method = "Rapp model";
nonLinearity.Smoothness = 3; % p parameter
nonLinearity.LinearGain = -hpaBackoff;
nonLinearity.OutputSaturationLevel = db2mag(pSaturation-30);
txWaveform = nonLinearity(txWaveform);

Thermal Noise

Add thermal noise to each transmit antenna by using the comm.ThermalNoise object with a noise
figure of 6 dB [4 on page 3-12].

3 Signal Transmission

3-4

thNoise = comm.ThermalNoise(NoiseMethod="Noise Figure",SampleRate=fs*osf,NoiseFigure=6);

for i = 1:cfgEHT.NumTransmitAntennas
 txWaveform(:,i) = thNoise(txWaveform(:,i));
end

EVM and Spectral Flatness Measurements

Downsampling and Filtering

Resample the oversampled waveform down to baseband for physical layer processing and EVM and
spectral flatness measurements, applying a low-pass anti-aliasing filter before downsampling. The
impact of the low-pass filter is visible in the spectral flatness measurement. Set the parameters for
the anti-aliasing filter so that all active subcarriers are within the filter passband.

Design resampling filter.

aStop = 40; % Stopband attenuation
ofdmInfo = wlanEHTOFDMInfo("EHT-Data",cfgEHT,1); % OFDM parameters for the first RU
SCS = fs/ofdmInfo.FFTLength; % Subcarrier spacing
txbw = max(abs(ofdmInfo.ActiveFrequencyIndices))*2*SCS; % Occupied bandwidth
[L,M] = rat(1/osf);
maxLM = max([L M]);
R = (fs-txbw)/fs;
TW = 2*R/maxLM; % Transition width

Resample the waveform to baseband.

firdec = designMultirateFIR(L,M,TW,aStop,SystemObject=true);
rxWaveform = firdec(txWaveform);

Receiver Processing

In this section you detect, synchronize, and extract each packet in rxWaveform, and then measure
the EVM and spectral flatness. Perform the spectral flatness measurement for non-OFDMA PPDU
type. For each packet, perform these steps.

• Detect the start of the packet
• Extract the legacy fields
• Estimate and correct coarse carrier frequency offset (CFO)
• Perform fine symbol timing estimate by using the frequency-corrected legacy fields
• Extract the packet from the waveform by using the fine symbol timing offset
• Correct the extracted packet with the coarse CFO estimate
• Extract the L-LTF, then estimate and correct the fine CFO

For each packet and each user, perform these steps.

• Extract the EHT-LTF and perform channel estimation for each of the transmit streams
• Measure the spectral flatness by using the channel estimate for non-OFDMA PPDU type
• Extract and OFDM demodulate the EHT Data field
• Perform noise estimation by using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers

 802.11be Transmitter Measurements

3-5

• Phase-correct and equalize the EHT Data field by using the channel and noise estimates
• For each data-carrying subcarrier in each spatial stream, find the closest constellation point and

measure the EVM
• Recover the PSDU by decoding the equalized symbols

This diagram shows the processing chain.

This example performs two different EVM measurements.

1 RMS EVM per user per packet, which comprises averaging the EVM over subcarriers, OFDM
symbols, and spatial streams.

2 RMS EVM per subcarrier per spatial stream per user for a packet. Because this configuration
maps spatial streams directly to antennas, this measurement can help detect frequency-
dependent impairments, which tend to affect individual RF chains differently. This measurement
averages the EVM over OFDM symbols only.

Get indices for accessing each field within the time-domain packet.

ind = wlanFieldIndices(cfgEHT);

Define the minimum detectable length of data, in samples.

minPktLen = double(ind.LSTF(2)-ind.LSTF(1))+1;

Detect and process packets within the received waveform by using a while loop, which performs
these steps.

1 Detect a packet by indexing into rxWaveform with the sample offset, searchOffset
2 Detect and process the first packet within rxWaveform
3 Detect and process the next packet by incrementing the sample index offset
4 Repeat until no further packets are detected

rxWaveformLength = size(rxWaveform,1);
pktLength = double(ind.EHTData(2));

3 Signal Transmission

3-6

rmsEVM = zeros(numPackets,numUsers);
eqSym = cell(1,numUsers);
evmPerSC = cell(1,numUsers);
decodeSuccess = false(numPackets,numUsers);
passSF = false(numPackets,1);
pktOffsetStore = zeros(numPackets,1);

rng(savedState); % Restore random state
pktNum = 0;
searchOffset = 0; % Start at first sample (no offset)
while (searchOffset+minPktLen)<=rxWaveformLength

 % Detect packet and determine coarse packet offset
 pktOffset = wlanPacketDetect(rxWaveform,cfgEHT.ChannelBandwidth,searchOffset);
 % Packet offset from start of the waveform
 pktOffset = searchOffset+pktOffset;
 % Skip packet if L-STF is empty
 if isempty(pktOffset) || (pktOffset<0) || ...
 ((pktOffset+ind.LSIG(2))>rxWaveformLength)
 break;
 end

 % Extract L-STF and perform coarse frequency offset correction
 nonht = rxWaveform(pktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 coarsefreqOff = wlanCoarseCFOEstimate(nonht,cfgEHT.ChannelBandwidth);
 nonht = frequencyOffset(nonht,fs,-coarsefreqOff);

 % Extract the legacy fields and determine fine packet offset
 lltfOffset = wlanSymbolTimingEstimate(nonht,cfgEHT.ChannelBandwidth);
 pktOffset = pktOffset+lltfOffset; % Determine packet offset

 % If offset is outside the bounds of the waveform, then skip samples
 % and continue searching within remainder of the waveform
 if (pktOffset<0) || ((pktOffset+pktLength)>rxWaveformLength)
 searchOffset = pktOffset+double(ind.LSTF(2))+1;
 continue;
 end

 % Timing synchronization complete; extract the detected packet
 rxPacket = rxWaveform(pktOffset+(1:pktLength),:);
 pktNum = pktNum+1;

 % Apply coarse frequency correction to the extracted packet
 rxPacket = frequencyOffset(rxPacket,fs,-coarsefreqOff);

 % Perform fine frequency offset correction on the extracted packet
 lltf = rxPacket(ind.LLTF(1):ind.LLTF(2),:); % Extract L-LTF
 fineFreqOff = wlanFineCFOEstimate(lltf,cfgEHT.ChannelBandwidth);
 rxPacket = frequencyOffset(rxPacket,fs,-fineFreqOff);

 % Extract EHT-LTF samples, demodulate, and perform channel estimation
 ehtLTF = rxPacket(ind.EHTLTF(1):ind.EHTLTF(2),:);
 for i = 1:numUsers
 ehtLTFDemod = wlanEHTDemodulate(ehtLTF,'EHT-LTF',cfgEHT,i);

 % Estimate channel
 [chanEst,pilotEst] = wlanEHTLTFChannelEstimate(ehtLTFDemod,cfgEHT,i);

 802.11be Transmitter Measurements

3-7

 % Measure spectral flatness for non-OFDMA PPDU type
 if strcmp(ppduType,"Non-OFDMA")
 [passSF(pktNum),deviation,testsc] = wlanSpectralFlatness(chanEst,'EHT',cfgEHT.ChannelBandwidth);
 % Plot deviation against limits
 ehtPlotTxSpectralFlatness(deviation,testsc,pktNum);
 end

 % Data demodulate
 rxData = rxPacket(ind.EHTData(1):ind.EHTData(2),:);
 demodSym = wlanEHTDemodulate(rxData,'EHT-Data',cfgEHT,i);

 % Perform pilot phase tracking
 demodSym = wlanEHTTrackPilotError(demodSym,chanEst,cfgEHT,'EHT-Data',i);

 % Estimate noise power in EHT fields
 ofdmInfo = wlanEHTOFDMInfo('EHT-Data',cfgEHT,i); % OFDM parameters
 nVarEst = ehtNoiseEstimate(demodSym(ofdmInfo.PilotIndices,:,:),pilotEst,cfgEHT,i);

 % Extract data subcarriers from demodulated symbols and channel
 % estimate
 demodDataSym = demodSym(ofdmInfo.DataIndices,:,:);
 chanEstData = chanEst(ofdmInfo.DataIndices,:,:);

 % Equalize
 [eqSym{i},csi] = ehtEqualizeCombine(demodDataSym,chanEstData,nVarEst,cfgEHT,i);

 % Set up EVM measurements
 [EVMPerPkt,EVMPerSC] = evmSetup(cfgEHT,i);

 % Compute RMS EVM over all spatial streams for the packet
 rmsEVM(pktNum,i) = EVMPerPkt(eqSym{i});

 % Compute RMS EVM per subcarrier and spatial stream for the packet
 evmPerSC{i} = EVMPerSC(eqSym{i}); % Nst-by-1-by-Nss

 % Recover data field bits
 rxPSDU = wlanEHTDataBitRecover(eqSym{i},nVarEst,csi,cfgEHT,i);

 if isequal(rxPSDU,data{i}((1:psduLen(i))+(pktNum-1)*psduLen(i)))
 decodeSuccess(pktNum,i) = true;
 end

 end

 % Plot equalized constellation and RMS EVM per subcarrier
 ehtTxEVMConstellationPlots(eqSym,evmPerSC,cfgEHT,pktNum);

 % Store the offset of each packet within the waveform
 pktOffsetStore(pktNum) = pktOffset;

 % Increment waveform offset and search remaining waveform for a packet
 searchOffset = pktOffset+pktLength+minPktLen;
end

3 Signal Transmission

3-8

 802.11be Transmitter Measurements

3-9

Set the unit of EVM to decibel or percentage.

evmUnit = ;

Display tables for decode status and measurement summary.

ehtMeasurementSummary(cfgEHT,rmsEVM,decodeSuccess,pktOffsetStore,passSF,evmUnit);

Decode Status

 Packet Number Start Index User 1 User 2 User 3
 _____________ ___________ _________ _________ _________

 1 74 "Success" "Success" "Success"
 2 9074 "Success" "Success" "Success"

Measurement Summary

 Packet Number User 1 EVM (dB) User 2 EVM (dB) User 3 EVM (dB) Packet EVM (dB)
 _____________ _______________ _______________ _______________ _______________

 1 -49.438 -49.408 -49.607 -49.484
 2 -48.78 -49.123 -49.103 -49.001

Average EVM for 3 users:
 User 1: -49.10dB

3 Signal Transmission

3-10

 User 2: -49.26dB
 User 3: -49.35dB
 All users: -49.24dB

Spectral Mask Measurement

In this section, you measure the spectral mask of the filtered and impaired waveform after HPA
modeling. The transmitter spectral mask test [5 on page 3-12] uses a time-gated spectral
measurement of the EHT Data field. The example extracts the EHT Data field of each packet from the
oversampled waveform by using the start indices of each packet within the baseband waveform. Any
delay introduced in the baseband processing chain used to determine the packet indices must be
accounted for when gating the EHT Data field within txWaveform. Concatenate the extracted EHT
Data fields in preparation for measurement.

startIdx = osf*(ind.EHTData(1)-1)+1; % Upsampled start of EHT Data
endIdx = osf*ind.EHTData(2); % Upsampled end of EHT Data
delay = grpdelay(firdec,1); % Group delay of downsampling filter
idx = zeros(endIdx-startIdx+1,pktNum);
for i = 1:pktNum
 % Start of packet in txWaveform
 pktOffset = round(osf*pktOffsetStore(i))-delay;
 % Indices of EHT Data in txWaveform
 idx(:,i) = (pktOffset+(startIdx:endIdx));
end
gatedEHTTData = txWaveform(idx(:),:);

The 802.11be standard specifies the spectral mask relative to the peak power spectral density (PSD).
This plot overlays the required mask with the measured PSD.

if pktNum>0
 ehtSpectralMaskTest(gatedEHTTData,fs,osf);
end

 Spectral mask passed

 802.11be Transmitter Measurements

3-11

Conclusion and Further Exploration

This example shows how to measure and plot these properties of an IEEE 802.11be waveform.

• Spectral flatness for non-OFDMA PPDU type
• RMS EVM per subcarrier
• Equalized constellation
• Spectral mask

The HPA model introduces significant in-band distortion and spectral regrowth, which is visible in the
EVM results, noisy constellation, and out-of-band emissions in the spectral mask plot. Try increasing
the HPA backoff and observe the improved EVM, constellation, and lower out-of-band emissions. The
downsampling (to bring the waveform to baseband for processing) stage includes filtering. The filter
response affects the spectral flatness measurement. The ripple in the spectral flatness measurement
is due to downsampling to baseband. Try using a different filter or changing the stop-band
attenuation and observe the impact on the spectral flatness. For meaningful EVM results generate at
least 20 EHT MU packets as specified in Section 36.3.19.4.4 of [1 on page 3-12].

References

1 IEEE P802.11be™/D2.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 8: Enhancements for extremely high throughput (EHT).

3 Signal Transmission

3-12

2 IEEE P802.11ax™-2021. Draft Standard for Information technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High Efficiency WLAN.

3 Loc and Cheong. IEEE P802.11 Wireless LANs. TGac Functional Requirements and Evaluation
Methodology Rev. 16. 2011-01-19.

4 Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd Edition.
United Kingdom: Cambridge University Press, 2013.

5 Archambault, Jerry, and Shravan Surineni. "IEEE 802.11 spectral measurements using vector
signal analyzers." RF Design 27.6 (2004): 38-49.

 802.11be Transmitter Measurements

3-13

802.11ba WUR Waveform Generation and Analysis

This example shows how to generate IEEE® 802.11ba™ wake-up radio (WUR) packet waveforms.
The example also demonstrates how to measure the transmit spectrum mask and spectral flatness.

Introduction

The 802.11ba standard [1], referred to as wake-up radio (WUR), defines a mechanism to enable
IEEE 802.11 stations (STAs) to operate at extremely low power consumption and to react to incoming
traffic with low latency through a wake-up signal. This standard defines two types of WUR PPDU
format.

• WUR Basic PPDU with 20 MHz channel bandwidth (one subchannel)
• WUR FDMA PPDU with 40 MHz (two subchannels) or 80 MHz (four subchannels) contiguous

channel bandwidths

Each 20 MHz subchannel can transmit data for a single user. For each 20 MHz subchannel, the WUR
physical layer (PHY) provides support for data rates of 62.5 kb/s and 250 kb/s, indicated as low data
rate (LDR) and high data rate (HDR), respectively. Additionally, Annex AC of [1] provides three
examples of symbol sequences and cyclic shift durations (CSDs) at specified data rates.

This example generates 5 WUR packets with a 20 MHz channel bandwidth and 10 microsecond gaps
between each of the packets. The example oversamples the waveform using a larger inverse fast
Fourier transform (IFFT) length than required for the nominal baseband rate and does not perform
spectral filtering. The example then models the effects of a high-power amplifier (HPA), which
introduces in-band distortion and spectral regrowth. After HPA modelling, the example extracts the
non-WUR portion of the WUR PHY preamble, comprising the L-STF, L-LTF, L-SIG, BPSK-Mark1, and
BPSK-Mark2 fields, and the WUR portion, comprising the WUR-Sync and WUR-Data fields, from the
generated waveform. The example then performs two transmit spectrum mask measurements for the
non-WUR portion of WUR PHY preamble and WUR portion, respectively, and measures the spectral
flatness for the WUR portion. This figure shows the workflow contained in this example.

3 Signal Transmission

3-14

Simulation Setup

Configure the example to generate 5 WUR packets with a 10 microsecond idle period between each
packet.

numPackets = 5;
idleTime = 10; % In microseconds

802.11ba WUR Waveform Configuration and Generation

Create a WUR configuration object for a 20 MHz transmission.

numSubchannels = 1; % Number of subchannels
cfgWUR = wlanWURConfig(numSubchannels); % Create WUR packet configuration
cfgWUR.NumTransmitAntennas = 1; % Number of transmit antennas
fs = wlanSampleRate(cfgWUR); % Get the nominal baseband sample rate
osf = 2; % Oversampling factor

Parameterize the transmission by setting WUR configuration object properties for each user. The
waveform generator function uses only the first cfgWUR.NumUsers elements of the cfgWUR cell
array to generate the corresponding WUR packets.

psdu = cell(1,cfgWUR.NumUsers);
psduLength = [5,10,15,20]; % Bytes, 1 to 22 inclusive for each 20 MHz subchannel
dataRate = {'LDR','HDR','LDR','HDR'};
symDesign = {'Example1','Example2','Example1','Example2'};
rng(0); % Set random state
for i = 1:cfgWUR.NumUsers
 cfgWUR.Subchannel{i}.PSDULength = psduLength(i);
 psdu{i} = randi([0 1],psduLength(i)*8,1,'int8');
 cfgWUR.Subchannel{i}.DataRate = dataRate{i};
 cfgWUR.Subchannel{i}.SymbolDesign = symDesign{i};
end

Generate the WUR waveform for the specified bits and configuration by using the
wlanWaveformGenerator function, setting the number of packets, idle time between each packet,
and oversampling factor.

txWaveform = wlanWaveformGenerator(psdu,cfgWUR,'NumPackets',numPackets,'IdleTime',idleTime*1e-6,'OversamplingFactor',osf);

Add Impairments

The HPA introduces nonlinear behaviour in the form of in-band distortion and spectral regrowth. This
example simulates the power amplifiers by using the Rapp model, which introduces AM/AM distortion
[2]. Model the amplifier by using the comm.MemorylessNonlinearity object, and configure
reduced distortion by specifying a back-off, hpaBackoff, such that the amplifier operates below its
saturation point.

pSaturation = 25; % Saturation power of a power amplifier in dBm
hpaBackoff = 15; % Power amplifier backoff in dB
nonLinearity = comm.MemorylessNonlinearity;
nonLinearity.Method = 'Rapp model';
nonLinearity.Smoothness = 3; % p parameter
nonLinearity.LinearGain = -hpaBackoff;
nonLinearity.OutputSaturationLevel = db2mag(pSaturation-30);

Apply the HPA model to the waveform.

 802.11ba WUR Waveform Generation and Analysis

3-15

txWaveform = nonLinearity(txWaveform);

Add thermal noise to each transmit antenna by using the comm.ThermalNoise object with a noise
figure of 6 dB [3].

thNoise = comm.ThermalNoise('NoiseMethod','Noise Figure','SampleRate',fs*osf,'NoiseFigure',6);

for i = 1:cfgWUR.NumTransmitAntennas
 txWaveform(:,i) = thNoise(txWaveform(:,i));
end

Transmit Spectrum Mask and Spectral Flatness Measurement

Get indices for accessing WUR fields within the time-domain packet.

ind = wlanFieldIndices(cfgWUR,'OversamplingFactor',osf);
% Get the number of samples in the idle time.
numIdle = osf*fs*idleTime*1e-6;
% Define the length of a WUR packet, in samples.
pktLength = double(max(ind.WURData(:,2)))+numIdle;
% Define the length of non-WUR portion of the WUR PHY preamble, composed of the
% L-STF, L-LTF, L-SIG, BPSK-Mark1 and BPSK-Mark2 fields, in samples.
idxPreamble = zeros(ind.BPSKMark2(2),numPackets,'uint32');
% Define the length of the WUR-Sync and WUR-Data fields, in samples.
idxWUR = zeros(max(ind.WURData(:,2))-ind.WURSync(1,1)+1,numPackets,'uint32');

Extract the non-WUR portion of the WUR PHY preamble and WUR portion of each packet within the
waveform.

pktOffset = 0; % Start at first sample (no offset)
for i = 1:numPackets
 % Indices of WUR preamble fields
 idxPreamble(:,i) = pktOffset+(1:ind.BPSKMark2(2));
 % Indices of WUR-Sync and WUR-Data fields
 idxWUR(:,i) = pktOffset+(ind.WURSync(1,1):max(ind.WURData(:,2)));
 % Packet offset to generate the end index of each packet
 pktOffset = i*pktLength;
end
preamFields = txWaveform(idxPreamble(:),:);
wurFields = txWaveform(idxWUR(:),:);

Measure the transmit spectrum mask of the non-WUR portion of the WUR PHY preamble, as specified
in Section 30.3.12.1 of [1].

if numPackets>0
 helperSpectralMaskTest(preamFields,fs,osf);
end

 Spectrum mask passed

3 Signal Transmission

3-16

Based on the values of limits (in dBr) relative to maximum spectral density of the signal and
corresponding frequency offsets (in MHz) provided in Section 30.3.12.1 of [1], define the transmit
spectrum masks of the WUR-Sync and WUR-Data fields for WUR basic and FDMA PPDUs are.

switch numSubchannels
 case 1 % WUR Basic PPDU
 dBrLimits = [-40 -40 -28 -20 -15 0 ...
 0 -15 -20 -28 -40 -40];
 fLimits = [-Inf -30 -20 -11 -3.5 -2.25 ...
 2.25 3.5 11 20 30 Inf];
 case 2 % 40 MHz WUR FDMA PPDU
 dBrLimits = [-40 -40 -28 -20 -15 0 0 -15 -20 ...
 -20 -15 0 0 -15 -20 -28 -40 -40];
 fLimits = [-Inf -60 -40 -21 -13.5 -12.25 -7.75 -6.5 -1 ...
 1 6.5 7.75 12.25 13.5 21 40 60 Inf];
 otherwise % 80 MHz WUR FDMA PPDU
 dBrLimits = [-40 -40 -28 -20 -15 0 0 -15 -20 -20 -15 0 0 -15 -20 ...
 -20 -15 0 0 -15 -20 -20 -15 0 0 -15 -20 -28 -40 -40];
 fLimits = [-Inf -120 -80 -41 -33.5 -32.25 -27.75 -26.5 -21 -19 -13.5 -12.25 -7.75 -6.5 -1 ...
 1 6.5 7.75 12.25 13.5 19 21 26.5 27.75 32.25 33.5 41 80 120 Inf];
end

Measure the transmit spectrum mask and spectral flatness of the WUR-Sync and WUR-Data fields, as
specified in Section 30.3.12.1 and Section 30.3.12.2 of [1]. The
wurTxSpectralFlatnessMeasurement function measures the spectral flatness by comparing the
power in any contiguous 1 MHz segment within the center 4 MHz of each 20 MHz channel to the

 802.11ba WUR Waveform Generation and Analysis

3-17

total transmitted power in the center 4 MHz and measures the transmitted power in the manner
described in Section 5.4.3.2.1 of [4] for equipment with continuous and non-continuous
transmissions.

if numPackets>0
 helperSpectralMaskTest(wurFields,fs,osf,dBrLimits,fLimits);
 isPassed = wurTxSpectralFlatnessMeasurement(wurFields,fs,osf);
 if isPassed
 fprintf(' Spectral flatness passed\n');
 else
 fprintf(' Spectral flatness failed\n');
 end
end

 Spectrum mask passed
 Spectral flatness passed

3 Signal Transmission

3-18

Conclusion and Further Exploration

This example shows how to generate WUR waveforms as specified in the IEEE 802.11ba standard,
and measure these quantities.

• Transmitter spectrum mask
• Spectral flatness

The HPA model introduces significant in-band distortion and spectral regrowth, which is visible in the
spectral mask plot. Try increasing the value of the HPA backoff and observe lower out-of-band
emissions. The various patterns of ripple and deviation limits in the spectral flatness measurement is
due to the different Multi-Carrier On-Off Keying (MC-OOK) On symbol designs, such as MC-OOK On
symbol sequences and CSD values applied. The spectral flatness test will fail for a 20 MHz
subchannel if the subchannel in the generated waveform is configured with symbol design and data
rate set to 'Example3' and 'HDR', respectively. Try using a different MC-OOK On symbol design
and observe the impact on the spectral flatness.

References

1 IEEE Std 802.11ba™-2021 - IEEE Standard for Information Technology--Telecommunications and
Information Exchange between Systems--Local and Metropolitan Area Networks-Specific
Requirements--Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 3: Wake-Up Radio Operation.

2 R. Porat, et al. TGax Evaluation Methodology, IEEE 11/14-0571r12. 2016-01-21.

 802.11ba WUR Waveform Generation and Analysis

3-19

3 Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd Edition.
United Kingdom: Cambridge University Press, 2013. Archambault, Jerry, and Shravan Surineni.
"IEEE 802.11 spectral measurements using vector signal analyzers." RF Design 27.6 (2004):
38-49.

4 ETSI EN 300 328 V2.1.1. Wideband transmission systems; Data transmission equipment
operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonised
Standard covering the essential of article 3.2 of Directive 2014/53EU. 2016-11.

Copyright 2021-2022 The MathWorks, Inc.

3 Signal Transmission

3-20

802.11ad Waveform Generation with Beamforming

This example shows how to beamform an IEEE® 802.11ad™ DMG waveform with a phased array
using WLAN Toolbox™ and Phased Array System Toolbox™.

Introduction

IEEE 802.11ad [1 on page 3-25] defines the directional multi-gigabit (DMG) transmission format
operating at 60 GHz. To overcome the large path loss experienced at 60 GHz, the IEEE 802.11ad
standard is designed to support directional beamforming. By using phased antenna arrays you can
apply an antenna weight vector (AWV) to focus the antenna pattern in the desired direction. Each
packet is transmitted on all array elements, but the AWV applies a phase shift to each element to
steer the transmission. The quality of a communication link can be improved by appending optional
training fields to DMG packets, and testing different AWVs at the transmitter or receiver. This process
is called beam refinement.

A DMG packet consists of the following fields:

1 STF - The short training field, which is used for synchronization.
2 CE - Channel estimation field, which is used for channel estimation.
3 Header - The signaling field, which the receiver decodes to determine transmission parameters.
4 Data - The data field, which carries the user data payload.
5 AGC Subfields - Optional automatic gain control (AGC) subfields, used for beam refinement.
6 Training Subfields - Optional training subfields, used for beam refinement.

The STF and CE fields form the preamble. The preamble, header, and data fields of a DMG packet are
transmitted with the same AWV. For transmitter beam refinement training, up to 64 training (TRN)
subfields can be appended to the packet. Each TRN subfield is transmitted using a different AWV. This
allows the performance of up to 64 different AWVs to be measured, and the AWV for the preamble,
header, and data fields to be refined for subsequent transmissions. CE subfields are periodically
transmitted, one for every four TRN subfields, among the TRN subfields. Each CE subfield is
transmitted using the same AWV as the preamble. To allow the receiver to reconfigure AGC before
receiving the TRN subfields, the TRN subfields are preceded by AGC subfields. For each TRN
subfield, an AGC subfield is transmitted using the same AWV applied to the individual TRN subfield.
This allows a gain to be set at the receiver, suitable to measuring all TRN subfields. The diagram
below shows the packet structure with four AGC and TRN subfields numbered and highlighted.
Therefore, four AWVs are tested as part of beam refinement. The same AWVs are applied to AGC and
TRN subfields with the same number.

 802.11ad Waveform Generation with Beamforming

3-21

This example simulates transmitter training by applying different AWVs to each of the training
subfields to steer the transmission in multiple directions. The strength of each training subfield is
evaluated at a receiver by evaluating the far-field plane wave to determine which transmission AWV
is optimal. This simulation does not include a channel or path loss.

This example requires “WLAN Toolbox” and “Phased Array System Toolbox”.

Waveform Specification

The waveform is configured for a DMG packet transmission with single-carrier modulation (SC)
physical layer, a 100-byte physical layer service data unit (PSDU), and four transmitter training
subfields. The four training subfields allow four AWVs to be tested for beam refinement. Using the
function wlanDMGConfig, create a DMG configuration object. A DMG configuration object specifies
transmission parameters.

dmg = wlanDMGConfig;
dmg.MCS = 1; % Single-carrier modulation
dmg.TrainingLength = 4; % Use 4 training subfields
dmg.PacketType = 'TRN-T'; % Transmitter training
dmg.PSDULength = 100; % Bytes

Beamforming Specification

The transmitter antenna pattern is configured as a 16-element uniform linear array with half-
wavelength spacing. Using the objects phased.ULA (Phased Array System Toolbox) and
phased.SteeringVector (Phased Array System Toolbox), create the phased array and the AWVs.
The location of the receiver for evaluating the transmission is specified as an offset from the
boresight of the transmitter.

receiverAz = 6; % Degrees off the transmitter's boresight

A uniform linear phased array with 16 elements is created to steer the transmission.

N = 16; % Number of elements
c = physconst('LightSpeed'); % Propagation speed (m/s)
fc = 60.48e9; % Center frequency (Hz)
lambda = c/fc; % Wavelength (m)
d = lambda/2; % Antenna element spacing (m)
TxArray = phased.ULA('NumElements',N,'ElementSpacing',d);

The AWVs are created using a phased.SteeringVector (Phased Array System Toolbox) object.
Five steering angles are specified to create five AWVs, one for the preamble and data fields, and one

3 Signal Transmission

3-22

for each of the four the training subfields. The preamble and data fields are transmitted at boresight.
The four training subfields are transmitted at angles around boresight.

% Create a directional steering vector object
SteeringVector = phased.SteeringVector('SensorArray',TxArray);

% The directional angle for the preamble and data is 0 degrees azimuth, no
% elevation, therefore at boresight. [Azimuth; Elevation]
preambleDataAngle = [0; 0];

% Each of the four training fields uses a different set of weights to steer
% to a slightly different direction. [Azimuth; Elevation]
trnAngle = [[-10; 0] [-5; 0] [5; 0] [10; 0]];

% Generate the weights for all of the angles
weights = SteeringVector(fc,[preambleDataAngle trnAngle]);

% Each row of the AWV is a weight to apply to a different antenna element
preambleDataAWV = conj(weights(:,1)); % AWV used for preamble, data and CE fields
trnAWV = conj(weights(:,2:end)); % AWV used for each TRN subfield

Using the plotArrayResponse helper function, the array response shows the direction of the receiver
is most aligned with the direction of training subfield TRN-SF3.

plotArrayResponse(TxArray,receiverAz,fc,weights);

 802.11ad Waveform Generation with Beamforming

3-23

Generate Baseband Waveform

Use the configured DMG object and a PSDU filled with random data as inputs to the waveform
generator, wlanWaveformGenerator. The waveform generator modulates PSDU bits according to a
format configuration.

% Create a PSDU of random bits
s = rng(0); % Set random seed for repeatable results
psdu = randi([0 1],dmg.PSDULength*8,1);

% Generate packet
tx = wlanWaveformGenerator(psdu,dmg);

Apply Weight Vectors to Each Field

A phased.Radiator (Phased Array System Toolbox) object is created to apply the AWVs to the
waveform, combine the radiated signal from each element to form a plane wave, and determine the
plane wave at the angle of interest, receiverAz. Each portion of the DMG waveform tx is passed
through the Radiator with a specified set of AWVs, and the angle at which to evaluate the plane wave.

Radiator = phased.Radiator;
Radiator.Sensor = TxArray; % Use the uniform linear array
Radiator.WeightsInputPort = true; % Provide AWV as argument
Radiator.OperatingFrequency = fc; % Frequency in Hertz
Radiator.CombineRadiatedSignals = true; % Create plane wave

% The plane wave is evaluated at a direction relative to the radiator
steerAngle = [receiverAz; 0]; % [Azimuth; Elevation]

% The beamformed waveform is evaluated as a plane wave at the receiver
planeWave = zeros(size(tx));

% Get indices for fields
ind = wlanFieldIndices(dmg);

% Get the plane wave while applying the AWV to the preamble, header, and data
idx = (1:ind.DMGData(2));
planeWave(idx) = Radiator(tx(idx),steerAngle,preambleDataAWV);

% Get the plane wave while applying the AWV to the AGC and TRN subfields
for i = 1:dmg.TrainingLength
 % AGC subfields
 agcsfIdx = ind.DMGAGCSubfields(i,1):ind.DMGAGCSubfields(i,2);
 planeWave(agcsfIdx) = Radiator(tx(agcsfIdx),steerAngle,trnAWV(:,i));
 % TRN subfields
 trnsfIdx = ind.DMGTRNSubfields(i,1):ind.DMGTRNSubfields(i,2);
 planeWave(trnsfIdx) = Radiator(tx(trnsfIdx),steerAngle,trnAWV(:,i));
end

% Get the plane wave while applying the AWV to the TRN-CE
for i = 1:dmg.TrainingLength/4
 trnceIdx = ind.DMGTRNCE(i,1):ind.DMGTRNCE(i,2);
 planeWave(trnceIdx) = Radiator(tx(trnceIdx),steerAngle,preambleDataAWV);
end

3 Signal Transmission

3-24

Evaluate the Beamformed Waveform

The helper function plotDMGWaveform plots the magnitude of the beamformed plane wave. When
evaluating the magnitude of the beamformed plane wave we can see that the fields beamformed in
the direction of the receiver are stronger than other fields.

plotDMGWaveform(planeWave,dmg,'Beamformed Plane Wave with Fields Highlighted');

rng(s); % Restore random state

Conclusion

This example showed how to generate an IEEE 802.11ad DMG waveform and apply AWVs to different
portions of the waveform. The example uses WLAN Toolbox to generate a standard-compliant
waveform, and Phased Array System Toolbox to apply the AWVs and evaluate the magnitude of the
resultant plane wave in the direction of a receiver.

Selected Bibliography

1 IEEE Std 802.11™-2020 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

 802.11ad Waveform Generation with Beamforming

3-25

802.11ac Transmit Beamforming

This example shows how to improve the performance of an IEEE® 802.11ac™ link by beamforming
the transmission when channel state information is available at the transmitter.

Introduction

Transmit beamforming focuses energy towards a receiver to improve the SNR of a link. In this
scheme the transmitter is called a beamformer and the receiver is called a beamformee. A steering
matrix is used by the beamformer to direct the energy to the beamformee. The steering matrix is
calculated using channel state information obtained through channel measurements. In IEEE
802.11ac [1 on page 3-35] these measurements are obtained by sounding the channel between
beamformer and beamformee. To sound the channel the beamformer sends a null data packet (NDP)
to the beamformee. The beamformee uses the channel information provided by sounding to calculate
a feedback matrix. This matrix is fed back to the beamformer in a compressed format. The
beamformer can then use the feedback matrix to create a steering matrix and beamform
transmissions to the beamformee. The process of forming the steering matrix is shown in this
diagram.

In IEEE 802.11ac the single user beamformee capability is not mandatory. Therefore, a multi-antenna
transmitter may have to use a different scheme to transmit packets to a receiver which cannot act as
a beamformee. One such scheme is spatial expansion. Spatial expansion allows space-time streams to
be transmitted on a greater number of transmit antennas. Using spatial expansion can provide a
small transmit diversity gain in channels with flat fading when compared to directly mapping space-
time streams to transmit antennas [2 on page 3-35].

This example demonstrates the benefits of transmit beamforming for a 4x2 MIMO configuration
between a transmitter and receiver, with two space-time streams. First, the example demonstrates
the operation of a receiver which is not capable of being a beamformee by measuring the signal
quality of a transmission made using spatial expansion. To show the benefits of transmit beamforming
the example measures the signal quality of a transmission over the same channel realization using
transmit beamforming and compares the performance of the two schemes. The stages are shown in
the diagram below.

3 Signal Transmission

3-26

Waveform Configuration

This examples simulates a 4x2 MIMO configuration with 2 space-time streams.

NumTxAnts = 4; % Number of transmit antennas
NumSTS = 2; % Number of space-time streams
NumRxAnts = 2; % Number of receive antennas

The format specific configuration of a VHT waveform is described using a VHT format configuration
object. Configure the waveform with a 20 MHz bandwidth and the MIMO configuration specified
above.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW20';
cfgVHT.APEPLength = 4000;

 802.11ac Transmit Beamforming

3-27

cfgVHT.NumTransmitAntennas = NumTxAnts;
cfgVHT.NumSpaceTimeStreams = NumSTS;
cfgVHT.MCS = 4; % 16-QAM, rate 3/4

Channel Configuration

This example uses a TGac channel model with delay profile Model-B. The channel realization is
controlled with a seed to allow repeatability.

tgacChannel = wlanTGacChannel;
tgacChannel.DelayProfile = 'Model-B';
tgacChannel.ChannelBandwidth = cfgVHT.ChannelBandwidth;
tgacChannel.SampleRate = wlanSampleRate(cfgVHT);
tgacChannel.NumReceiveAntennas = NumRxAnts;
tgacChannel.NumTransmitAntennas = NumTxAnts;
tgacChannel.TransmitReceiveDistance = 100; % Meters
tgacChannel.RandomStream = 'mt19937ar with seed';
tgacChannel.Seed = 70; % Seed to allow repeatability

Noise is added to the time domain waveform at the output of the channel with a power, noisePower.

noisePower = -37; % dBW

Setup other objects and variables for simulation.

% Indices for extracting fields
ind = wlanFieldIndices(cfgVHT);

% AWGN channel to add noise with a specified noise power. The random
% process controlling noise generation is seeded to allow repeatability.
awgnChannel = comm.AWGNChannel;
awgnChannel.RandomStream = 'mt19937ar with seed';
awgnChannel.Seed = 5;
awgnChannel.NoiseMethod = 'Variance';
awgnChannel.Variance = 10^(noisePower/10);

% Calculate the expected noise variance after OFDM demodulation
noiseVar = vhtBeamformingNoiseVariance(noisePower,cfgVHT);

% Number of spatial streams
Nss = NumSTS/(cfgVHT.STBC+1);

% Get the number of occupied subcarriers in VHT fields
ofdmInfo = wlanVHTOFDMInfo('VHT-Data',cfgVHT);
Nst = ofdmInfo.NumTones;

% Generate a random PSDU which will be transmitted
rng(0); % Set random state for repeatability
psdu = randi([0 1],cfgVHT.PSDULength*8,1);

Transmission with Spatial Expansion

First perform a transmission using spatial expansion. This type of transmission may be made by a
multi-antenna transmitter to a receiver which is not capable of being a beamformee. The
SpatialMapping property of the format configuration object allows different spatial mapping
schemes to be selected. This example uses the example spatial expansion matrix provided in Section
19.3.11.1.1.2 of [1 on page 3-35]. Therefore, configure a 'Custom' spatial mapping. Use the
custom spatial mapping matrix by assigning the SpatialMappingMatrix of the format

3 Signal Transmission

3-28

configuration object. This matrix describes the mapping of each subcarrier for each space-time
stream to all transmit antennas. Therefore the size of the spatial mapping matrix used is Nst-by-
Nsts-by-Nt. Nst is the number of occupied subcarriers, Nsts is the number of space-time streams,
and Nt is the number of transmit antennas. The spatial mapping matrix duplicates some of the space-
time streams to form the desired number of transmit streams.

% Configure a spatial expansion transmission
vhtSE = cfgVHT;
vhtSE.SpatialMapping = 'Custom'; % Use custom spatial expansion matrix
vhtSE.SpatialMappingMatrix = helperSpatialExpansionMatrix(vhtSE);

% Generate waveform
tx = wlanWaveformGenerator(psdu,vhtSE);

% Pass waveform through a fading channel and add noise. Trailing zeros
% are added to allow for channel filter delay.
rx = tgacChannel([tx; zeros(15,NumTxAnts)]);
% Allow same channel realization to be used subsequently
reset(tgacChannel);
rx = awgnChannel(rx);
% Allow same noise realization to be used subsequently
reset(awgnChannel);

% Estimate symbol timing
tOff = wlanSymbolTimingEstimate(rx(ind.LSTF(1):ind.LSIG(2),:),vhtSE.ChannelBandwidth);

% Channel estimation
vhtltf = rx(tOff+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,vhtSE);
chanEstSE = wlanVHTLTFChannelEstimate(vhtltfDemod,vhtSE);

Demodulate and equalize the data field to recover OFDM symbols for each spatial stream.

vhtdata = rx(tOff+(ind.VHTData(1):ind.VHTData(2)),:);
[~,~,symSE] = wlanVHTDataRecover(vhtdata,chanEstSE,noiseVar,vhtSE,...
 'PilotPhaseTracking','None');

Plot the constellation of each spatial stream.

refSym = wlanReferenceSymbols(cfgVHT); % Reference constellation
seConst = vhtBeamformingPlotConstellation(symSE,refSym, ...
 'Spatial Expansion Transmission Equalized Symbols');

 802.11ac Transmit Beamforming

3-29

The variance in the constellation is approximately the same for each spatial stream as the SNRs are
approximately the same. This is because the average power in the channel is on average
approximately the same per space-time stream:

disp('Mean received channel power per space-time stream with spatial expansion: ')

Mean received channel power per space-time stream with spatial expansion:

for i = 1:NumSTS
 fprintf(' Space-time stream %d: %2.2f W\n',i, ...
 sum(mean(chanEstSE(:,i,:).*conj(chanEstSE(:,i,:)),1),3))
end

 Space-time stream 1: 0.73 W
 Space-time stream 2: 0.50 W

3 Signal Transmission

3-30

Transmission with Beamforming

When the receiver is capable of being a beamformee, a beamformed transmission can create a higher
SNR compared to spatial expansion. This example demonstrates the advantage of having channel
state information available to create and use a steering matrix.

Calculate a beamforming steering matrix, by passing an NDP through the channel. Use 'Direct'
spatial mapping for the NDP transmission with the number of space-time streams is configured to
match the number of transmit antennas. This uses the VHT-LTF to sound channels between each of
the transmit antennas and receive antennas. Use the calculated beamforming matrix to beamform a
transmission through the channel. The same channel realization is used for sounding and data
transmission and there is no feedback compression between beamformee and beamformer, therefore
the beamforming is regarded as perfect in this example.

% Configure a sounding packet
vhtSound = cfgVHT;
vhtSound.APEPLength = 0; % NDP so no data
vhtSound.NumSpaceTimeStreams = NumTxAnts;
vhtSound.SpatialMapping = 'Direct'; % Each TxAnt carries a STS

% Generate sounding waveform
soundingPSDU = [];
tx = wlanWaveformGenerator(soundingPSDU,vhtSound);

% Pass sounding waveform through the channel and add noise. Trailing zeros
% are added to allow for channel filter delay.
rx = tgacChannel([tx; zeros(15,NumTxAnts)]);
% Allow same channel realization to be used subsequently
reset(tgacChannel);
rx = awgnChannel(rx);
% Allow same noise realization to be used subsequently
reset(awgnChannel);

% Estimate symbol timing
tOff = wlanSymbolTimingEstimate(rx(ind.LSTF(1):ind.LSIG(2),:),vhtSound.ChannelBandwidth);

Perform channel estimation using the sounding packet to estimate the actual channel response
between each transmit and receive antenna.

% Channel estimation
vhtLLTFInd = wlanFieldIndices(vhtSound,'VHT-LTF');
vhtltf = rx(tOff+(vhtLLTFInd(1):vhtLLTFInd(2)),:);
vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,vhtSound);
chanEstSound = wlanVHTLTFChannelEstimate(vhtltfDemod,vhtSound);

The channel estimated using the wlanVHTLTFChannelEstimate function includes cyclic shifts
applied at the transmitter to each space-time stream. Remove the cyclic shifts applied at the
transmitter from the channel estimate to calculate a beamforming steering matrix.

chanEstSound = vhtBeamformingRemoveCSD(chanEstSound, ...
 vhtSound.ChannelBandwidth,vhtSound.NumSpaceTimeStreams);

This example calculates the beamforming steering matrix using singular value decomposition (SVD).
The SVD of the channel matrix results in two unitary matrices, U and V, and a diagonal matrix of
singular values S. The first NumSTS columns of V per subcarrier are used as the beamforming
steering matrix. The SVD is computed using the svd function.

 802.11ac Transmit Beamforming

3-31

chanEstPerm = permute(chanEstSound,[3 2 1]); % Permute to Nr-by-Nt-by-Nst
[U,S,V] = pagesvd(chanEstPerm,'econ');
steeringMatrix = permute(V(:,1:NumSTS,:),[3 2 1]); % Permute to Nst-by-Nsts-by-Nt

Apply the beamforming steering matrix calculated above as a custom spatial mapping matrix and use
it to send data through the same channel.

% Configure a transmission with beamforming
vhtBF = cfgVHT;
vhtBF.SpatialMapping = 'Custom';
vhtBF.SpatialMappingMatrix = steeringMatrix;

% Generate beamformed data transmission
tx = wlanWaveformGenerator(psdu,vhtBF);

% Pass through the channel and add noise. Trailing zeros
% are added to allow for channel filter delay.
rx = tgacChannel([tx; zeros(15,NumTxAnts)]);
rx = awgnChannel(rx);

% Estimate symbol timing
tOff = wlanSymbolTimingEstimate(rx(ind.LSTF(1):ind.LSIG(2),:),vhtBF.ChannelBandwidth);

% Channel estimation
vhtltf = rx(tOff+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,vhtBF);
chanEstBF = wlanVHTLTFChannelEstimate(vhtltfDemod,vhtBF);

Demodulate and equalize the received data field to recover OFDM symbols for each spatial stream.

vhtdata = rx(tOff+(ind.VHTData(1):ind.VHTData(2)),:);
[~,~,symBF] = wlanVHTDataRecover(vhtdata,chanEstBF,noiseVar,vhtBF,...
 'PilotPhaseTracking','None','LDPCDecodingMethod','norm-min-sum');

Plot the equalized constellation for each spatial stream. The higher-order spatial stream has a larger
variance. This is due to the ordered singular values of the channels used in SVD beamforming.

bfConst = vhtBeamformingPlotConstellation(symBF,refSym, ...
 'Beamformed Transmission Equalized Symbols');

3 Signal Transmission

3-32

This ordering is also visible in the average power of the received space-time streams. The power of
the received first space-time stream is larger than the second space-time stream. This is because the
received signal strength is a function of the singular values of the channel which SVD orders in a
decreasing fashion.

disp('Mean received channel power per space-time stream with SVD transmit beamforming: ')

Mean received channel power per space-time stream with SVD transmit beamforming:

for i = 1:NumSTS
 fprintf(' Space-time stream %d: %2.2f W\n',i, ...
 sum(mean(chanEstBF(:,i,:).*conj(chanEstBF(:,i,:)),1),3))
end

 Space-time stream 1: 2.08 W
 Space-time stream 2: 0.45 W

 802.11ac Transmit Beamforming

3-33

Comparison and Conclusion

Plot the equalized constellation from the spatial expansion and beamformed transmissions for all
spatial streams. Note the improved constellation using SVD-based transmit beamforming.

str = sprintf('%dx%d',NumTxAnts,NumRxAnts);
compConst = vhtBeamformingPlotConstellation([symSE(:) symBF(:)],refSym, ...
 'Beamformed Transmission Equalized Symbols', ...
 {[str ' Spatial Expansion'],[str ' Transmit Beamforming']});

Measure the improvement using the RMS and maximum error vector magnitude (EVM). EVM is a
measure of demodulated signal quality.

EVM = comm.EVM;
EVM.AveragingDimensions = [1 2]; % Average over all subcarriers and symbols

3 Signal Transmission

3-34

EVM.MaximumEVMOutputPort = true;
EVM.ReferenceSignalSource = 'Estimated from reference constellation';
EVM.ReferenceConstellation = refSym;

[rmsEVMSE,maxEVMSE] = EVM(symSE); % EVM using spatial expansion
[rmsEVMBF,maxEVMBF] = EVM(symBF); % EVM using beamforming

for i = 1:Nss
 fprintf(['Spatial stream %d EVM:\n' ...
 ' Spatial expansion: %2.1f%% RMS, %2.1f%% max\n' ...
 ' Transmit beamforming: %2.1f%% RMS, %2.1f%% max\n'], ...
 i,rmsEVMSE(i),maxEVMSE(i),rmsEVMBF(i),maxEVMBF(i));
end

Spatial stream 1 EVM:
 Spatial expansion: 9.2% RMS, 44.8% max
 Transmit beamforming: 2.0% RMS, 8.6% max
Spatial stream 2 EVM:
 Spatial expansion: 9.2% RMS, 52.3% max
 Transmit beamforming: 4.1% RMS, 12.7% max

This example demonstrates that if a receiver is capable of being a beamformee, the SNR can
potentially be improved when a transmission is beamformed compared to a spatial expansion
transmission. The increase in received power when using beamforming can lead to more reliable
demodulation or potentially even a higher order modulation and coding scheme to be used for the
transmission.

In a realistic operational simulation the performance of beamforming would be degraded due to the
delay between channel state information calculation and feedback by the beamformee and feedback
quantization. For more information, see [2 on page 3-35].

References

1 IEEE Std 802.11™-2020 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 Perahia, Eldad, and Robert Stacey. Next Generation Wireless LANS: 802.11n and 802.11ac.
Cambridge University Press, 2013.

 802.11ac Transmit Beamforming

3-35

802.11ah Waveform Generation

This example shows how to generate IEEE® 802.11ah™ S1G waveforms and highlights some of the
key features of the standard.

Introduction

802.11ah is intended for extended range and low power applications in the unlicensed sub 1 GHz
band, including machine to machine communication and the internet of things. 802.11ah uses
narrower contiguous channel bandwidths than 802.11n™ and 802.11ac™ to facilitate long range, low
power communication at a lower data rate. Valid channel bandwidths are 1, 2, 4, 8, and 16 MHz.

Since 802.11ah uses the same underlying physical layer technologies as 802.11n and 802.11ac, the
processing chains are very similar. With the exception of 1 MHz transmissions, in general data is
modulated using the same process as in 802.11ac with a 1/10 clock rate.

In this example a number of 802.11ah S1G [1] waveforms are generated to highlight some of the key
modes and features of the 802.11ah standard.

802.11ah Modes and PHY Features

The 802.11ah standard defines three modes:

• The 1 MHz mode (S1G_1M) is intended for low data rate applications. This mode features an
extended preamble and a new modulation and coding scheme, MCS10, to improve robustness.
MCS10 is BPSK 1/2 rate with 2 times repetition. When MCS10 is used the short training field
(STF) is boosted by 3 dB to allow for packet detection [2]. In this mode the whole PPDU is
beamformed.

• The >= 2 MHz long preamble mode (S1G_LONG) is used for single or multi-user transmissions
with a 2, 4, 8, or 16 MHz channel bandwidth. The PPDU is similar to a 802.11ac VHT PPDU,
consisting of an omni-directional portion and beam-changeable portion.

• The >= 2 MHz short preamble mode (S1G_SHORT) is used for single-user transmissions with a 2,
4, 8, or 16 MHz channel bandwidth. In this mode the whole PPDU is beamformed.

The 802.11ah standard is intended to operate outdoors as well as indoors. Traveling Pilots have been
introduced to compensate for Doppler spread caused by reflections due to vehicular motion. In
previous 802.11 standards the pilot locations are fixed to the same subcarrier for the duration of a
packet. Tracking the varying channel conditions due to a high Doppler environment is not effective
with fixed pilot locations. Traveling pilots change the subcarriers that carry the pilots over time
which improves the ability to track changing channel conditions. In this example a waveform is
generated for each of the three modes introduced above with configurations for MCS10 and traveling
pilot highlighted.

S1G 1MHz Mode

An S1G 1 MHz PPDU consists of five fields, all of which can be beamformed:

1 STF - The short training field, which is used for coarse synchronization
2 LTF1 - The first long training field, which is used for fine synchronization and initial channel

estimation
3 SIG - The signaling field, which the receiver decodes to determine transmission parameters

3 Signal Transmission

3-36

4 LTF2-N - The subsequent long training fields, which is used for MIMO channel estimation
5 Data - The data field, which carries the user data payload

Examples of waveform generation for MCS0 and MCS10 1 MHz transmissions are shown. When
MCS10 is used a 3 dB power boost is applied to the short training field. This power boost will be
visualized.

The function wlanWaveformGenerator returns an S1G configuration object. Create an S1G
configuration object for 1 MHz bandwidth, 1 transmit antenna, 1 space-time stream, BPSK rate 1/2
(MCS0), and a 256 byte APEP length.

cfg1MHz = wlanS1GConfig;
cfg1MHz.ChannelBandwidth = 'CBW1';
cfg1MHz.NumTransmitAntennas = 1;
cfg1MHz.NumSpaceTimeStreams = 1;
cfg1MHz.MCS = 0;
cfg1MHz.APEPLength = 256;

Create a PSDU of random bits using the required length for the specified format configuration.

psdu = randi([0 1],cfg1MHz.PSDULength*8,1);

Generate an S1G waveform using the configured S1G format object and PSDU as inputs to the
waveform generator, wlanWaveformGenerator. The waveform generator modulates PSDU bits
according to a format configuration. The waveform generator also performs OFDM windowing. In this
example windowing is disabled for clearer visualization.

% Generate waveform with windowing disabled
txMCS0 = wlanWaveformGenerator(psdu,cfg1MHz,'WindowTransitionTime',0);

Change the MCS of cfg1MHz to 10 and generate a second waveform to demonstrate the STF power
boost.

cfg1MHz.MCS = 10;
txMCS10 = wlanWaveformGenerator(psdu,cfg1MHz,'WindowTransitionTime',0);

The power is plotted for the first 320 microseconds of both waveforms to capture the duration of the
STF and first LTF in the 1 MHz transmission. Note the power boost of the STF when MCS10 is used.
The power boost is required to obtain sufficient packet detection sensitivity to support MCS10 [2].

t = 320; % Duration to plot in microseconds
sr = wlanSampleRate(cfg1MHz); % Sample rate Hz
tick = (1/sr)*1e6; % Microseconds per sample
hf = figure;
hp(1) = plot(0:tick:t-tick,20*log10(abs(txMCS10(1:t*sr*1e-6,:))),'bx-');
hold on;
hp(2) = plot(0:tick:t-tick,20*log10(abs(txMCS0(1:t*sr*1e-6,:))),'ro-');
xlim([0 t-1]);
ylim([-20 15]);
s1gWavGenPlotFieldOverlay(cfg1MHz,hf);
grid on;
legend(hp,'1 MHz MCS10','1 MHz MCS0','Location','SouthWest');
title('Power of 1 MHz PPDU');
xlabel('Time (us)');
ylabel('Power (dBW)');

 802.11ah Waveform Generation

3-37

S1G >=2 MHz Long Preamble Mode

The 802.11ah long preamble supports single and multi-user transmissions. The long preamble PPDU
consists of two portions; the omni-directional portion and the beam-changeable portion.

The omni-directional portion is transmitted to all users without beamforming. It consists of three
fields:

1 STF - The short training field, which is used for coarse synchronization
2 LTF1 - The first long training field, which is used for fine synchronization and initial channel

estimation
3 SIG-A - The signaling A field, which the receiver decodes to determine transmission parameters

relevant to all users

The beam-changeable portion can be beamformed to each user. It consists of four fields:

1 D-STF - The beamformed short training field, which is used by the receiver for automatic gain
control

2 D-LTF - The beamformed long training fields, which is used for MIMO channel estimation
3 SIG-B - The signaling B field. In a multi-user transmission the SIG-B signals the MCS for each

user. In a single-user transmission the MCS is signaled in the SIG-A field of the omni-directional
portion of the preamble. Therefore in a single-user transmission the SIG-B symbol transmitted is
an exact repetition of the first D-LTF. This repetition allows for improved channel estimation.

4 Data - The data field, which carries the user data payload

3 Signal Transmission

3-38

To visualize repetition of the first D-LTF an S1G 2 MHz long preamble format configuration object is
created using the wlanS1GConfig function and configured for one space-time stream and one
transmit antenna.

cfgSU = wlanS1GConfig;
cfgSU.ChannelBandwidth = 'CBW2';
cfgSU.Preamble = 'Long';
cfgSU.NumUsers = 1;
cfgSU.NumSpaceTimeStreams = 1;
cfgSU.NumTransmitAntennas = 1;
cfgSU.MCS = 1;
cfgSU.APEPLength = 150;

The >=2 MHz long preamble waveform with a single space-time stream is generated using the
cfgSU object.

% Generate a PSDU containing random bits
psdu = randi([0 1],cfgSU.PSDULength*8,1);

% Generate a PPDU waveform
txSU = wlanWaveformGenerator(psdu,cfgSU);

The D-LTF and SIG-B fields are plotted. Note the repetition of the D-LTF in the SIG-B symbol.

s1gWavGenPlotSIGB(cfgSU,txSU);

As a comparison a 2 MHz long preamble multi-user waveform will be generated and visualized. First,
a format configuration object is created for two users. The user positions, number of space times

 802.11ah Waveform Generation

3-39

streams, MCS and APEP length are configured per user using vectors to parameterize the relevant
properties of the cfgMU object.

cfgMU = wlanS1GConfig;
cfgMU.ChannelBandwidth = 'CBW2';
cfgMU.Preamble = 'Long';
cfgMU.NumUsers = 2;
cfgMU.UserPositions = [0 1];
cfgMU.NumSpaceTimeStreams = [1 1];
cfgMU.NumTransmitAntennas = sum(cfgMU.NumSpaceTimeStreams);
cfgMU.MCS = [1 2];
cfgMU.APEPLength = [150 250];

A random PSDU is created for each user and a multi-user waveform is generated. The PSDU length
for each user, cfgMU.PSDULength, is calculated based on transmission properties by the cfgMU
object.

% Generate cell array containing the PSDUs for all users
psdu = cell(cfgMU.NumUsers,1);
for i = 1:cfgMU.NumUsers
 psdu{i} = randi([0 1],cfgMU.PSDULength(i),1);
end

% Generate waveform
txMU = wlanWaveformGenerator(psdu,cfgMU);

The two D-LTF fields and SIG-B fields are plotted for the first space-time stream. Note the SIG-B
symbol is no longer a repetition of D-LTF1 as it carries the MCS per user.

s1gWavGenPlotSIGB(cfgMU,txMU);

3 Signal Transmission

3-40

S1G >=2 MHz Short Preamble Mode

An S1G >=2 MHz short preamble waveform consists of five fields, all of which can be beamformed:

1 STF - The short training field, which is used for coarse synchronization
2 LTF1 - The first long training field, which is used for fine synchronization and initial channel

estimation
3 SIG - The signaling field, which the receiver decodes to determine transmission parameters
4 LTF2-N - The subsequent long training fields, which is used for MIMO channel estimation
5 Data - The data field, which carries the user data payload

In this example S1G 2 MHz short preamble waveforms with and without traveling pilots will be
generated.

Traveling pilots are an optional feature for all three S1G modes to allow for outdoor links where
Doppler spread is potentially introduced due to moving vehicles. The traveling pilots are boosted 1.5
times compared to fixed pilots to improve channel estimation performance in this environment [3].

Two >= 2 MHz short preamble waveforms are generated; one with fixed pilots and one with traveling
pilots. First a S1G 2 MHz short preamble format configuration with fixed pilot locations is created
using the wlanS1GConfig object.

cfgFix = wlanS1GConfig;
cfgFix.ChannelBandwidth = 'CBW2';
cfgFix.Preamble = 'Short';

 802.11ah Waveform Generation

3-41

cfgFix.NumTransmitAntennas = 1;
cfgFix.NumSpaceTimeStreams = 1;
cfgFix.MCS = 0; % BPSK so same power on all subcarriers for analysis
cfgFix.APEPLength = 100;
cfgFix.TravelingPilots = false; % Fixed pilot subcarriers

Generate a fixed pilot waveform using the cfgFix object and random PSDU bits. The PSDU bits are
created using the required length for the specified format configuration.

% Generate a PSDU containing random bits
psdu = randi([0 1],cfgFix.PSDULength*8,1);

% Generate a PPDU waveform
txFix = wlanWaveformGenerator(psdu,cfgFix);

Extract the data field from the time domain waveform using the known duration of the preamble. Plot
the magnitude of the OFDM symbols and subcarriers. The location of nulls, data carrying subcarriers,
and pilot carrying subcarriers are highlighted. The pilot locations remain unchanged for the duration
of the packet.

s1gWavGenPlotGrid(txFix,cfgFix, ...
 'Demodulated OFDM symbols with fixed pilots highlighted')

Now a waveform is generated using the same configuration but with traveling pilots. This could be
accomplished by changing the TravelingPilots property of the existing configuration object and
regenerating the waveform, but in this example a separate object is created and used.

3 Signal Transmission

3-42

% Copy the format configuration object and enable traveling pilots
cfgTravel = cfgFix;
cfgTravel.TravelingPilots = true;

% Generate waveform with traveling pilots
txTravel = wlanWaveformGenerator(psdu,cfgTravel);

The magnitude of the OFDM symbols and subcarriers is plotted again. The pilot locations now change
per OFDM symbol. The magnitude of pilot subcarriers is 1.5 times that of data carrying subcarriers.

s1gWavGenPlotGrid(txTravel,cfgTravel, ...
 'Demodulated OFDM symbols with traveling pilots highlighted')

Conclusion

This example has demonstrated how to generate waveforms for different 802.11ah S1G modes and
highlighted some of the key features of the standard.

Appendix

This example uses the following helper functions:

• s1gWavGenPlotFieldOverlay.m
• s1gWavGenPlotSIGB.m
• s1gWavGenPlotGrid.m

 802.11ah Waveform Generation

3-43

Selected Bibliography

1 IEEE P802.11ah™/D5.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 2: Sub 1 GHz License Exempt Operation.

2 Sameer Vermani et al. "Preamble Format for 1 MHz", IEEE 802.11-11/1482r4, 2012-01-16.
3 Ron Porat et al. "Traveling Pilots", IEEE 8902.11-12/1322r0, 2012-11-12.

3 Signal Transmission

3-44

802.11n Link in Simulink

This example shows how to simulate an IEEE® 802.11n™ HT link in Simulink® with WLAN
Toolbox™.

Introduction

An 802.11n HT [1] link with a fading channel is simulated in this model. Multiple packets are
transmitted through a 2-by-2 TGn MIMO channel, demodulated and the PSDUs recovered. The
PSDUs are compared to those transmitted to determine the packet error rate. Packet detection,
timing synchronization, carrier frequency offset correction and pilot phase tracking are performed by
the receiver.

The MATLAB Function block allows MATLAB® functions to be used in a Simulink model. In this
example an 802.11n link is modeled in Simulink by using MATLAB Function blocks to call WLAN
Toolbox functions. For an equivalent 802.11n simulation in MATLAB see the example “802.11n Packet
Error Rate Simulation for 2x2 TGn Channel” on page 5-16.

Structure of the Example

The model has four main parts:

• Transmitter: Generates a random PSDU and creates an 802.11n HT packet.
• Channel: Models a TGn 2x2 MIMO channel with AWGN.
• Receiver: Recovers the transmitted PSDU by performing packet detection, time and frequency

synchronization, MIMO channel estimation and PSDU demodulation and decoding.
• Analysis: Compares the transmitted and recovered PSDUs to determine the packet error rate, and

displays the equalized symbols.

The following sections describe the transmitter and receiver in more detail.

 802.11n Link in Simulink

3-45

Transmitter

The Transmitter block creates a random PSDU and encodes the bits to create a single packet
waveform. The wlanWaveformGenerator function is called within the Packet Generator block to
generate a waveform for a packet. An idle period is added after each packet to create periodic bursts.

Receiver

The receiver has two components: packet detection and packet recovery.

3 Signal Transmission

3-46

The wlanPacketDetect function is called within the Packet Detector block. If a packet is detected
the Packet Recovery subsystem is enabled to process the detected packet.

The Packet Recovery subsystem processing consists of the following steps:

1 Coarse carrier frequency offset is estimated and corrected.
2 Fine timing synchronization is established.
3 Fine carrier frequency offset is estimated and corrected.
4 The HT-LTF is extracted from the synchronized received waveform. The HT-LTF is OFDM

demodulated and channel estimation is performed.
5 The HT Data field is extracted from the synchronized received waveform.
6 Noise estimation is performed using the demodulated data field pilots.
7 The PSDU is recovered using the extracted field, the channel and noise power estimates.

Results and Displays

When the simulation is run, the packet error rate is displayed. This is updated after each packet is
processed. The equalized data symbols are also displayed for each packet processed. By default, 200
packets are simulated.

 802.11n Link in Simulink

3-47

Exploring the Example

Try changing the signal to noise ratio (SNR) in the AWGN channel block. Decreasing the SNR
increases the packet error rate and the noise visible in the equalized symbol constellation. Link
parameters such as the modulation and coding scheme (MCS), number of transmit and receive
antennas and space-time streams can be changed in the Model Parameters block.

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

3 Signal Transmission

3-48

Signal Reception

4

Recover and Analyze Packets in 802.11 Waveform

This example blindly detects, decodes, and analyzes multiple IEEE 802.11a™, IEEE 802.11n™, IEEE
802.11ac™, and IEEE 802.11ax™ packets in a waveform. The example provides a summary of the
detected packets and displays the MAC contents, error vector magnitude (EVM), power, and signaling
information for a selected packet.

Introduction

In this example, you detect, decode, and analyze multiple packets within a waveform. This example
can decode OFDM non-HT, non-HT duplicate, HT, VHT [1 on page 4-11], HE MU, HE SU, and HE
ER SU [2 on page 4-11] packet formats. The receiver does not know any transmission parameters,
except for the channel bandwidth. It retrieves these parameters by decoding the preamble fields of
the packet.

• The spectrum and time domain samples.
• The signaling field contents.
• The resource unit and user information for an HE waveform.
• The constellation of the equalized data symbols.
• The EVM of the signaling fields.
• The EVM per data subcarrier averaged over spatial streams and symbols.
• The EVM per data symbol averaged over spatial streams and subcarriers.
• The spectral flatness for non-OFDMA packets.
• The MAC frame contents: A-MPDU deaggregation status, Address1, Address2, Frame Check

Sequence (FCS) and Frame Type.

Setup Waveform Recovery Parameters

This example analyzes I/Q data containing non-HT, HT-MF, VHT, and HE packets. The useSDR variable
controls the data source for this example:

• When you select useSDR, an SDR captures an off-the-air waveform.
• When you clear useSDR, comm.BasebandFileReader reads a synthetic waveform stored in a

binary file format.

useSDR = ;

Reception with an SDR Device

This example uses SDRs supported by Wireless Testbench™ and SDRs supported by Communication
Toolbox™ support packages. This list provides information on which radios can be used by this
example along with the required products.

• USRP™ N310/N320/N321/X310/X410 (requires Wireless Testbench™ and Wireless Testbnech
Support Package for NI™ USRP Radios)

• ADALM-PLUTO (requires Communications Toolbox Support Package for Analog Devices® ADALM-
Pluto Radio)

• USRP™ E310/E312 (requires Communications Toolbox Support Package for USRP™ Embedded
Series Radio)

4 Signal Reception

4-2

• AD9361/FMCOMMS2/3/4/5 (requires Communications Toolbox Support Package for Xilinx®
Zynq®-Based Radio)

• USRP™ N200/N210/USRP2/B200/B210/X300 (requires Communications Toolbox Support Package
for USRP™ Radio)

See the relevant documentation for the chosen product and SDR on set up and installation.

Select SDR Device and Capture Antenna(s)

When you select an SDR as the data source, specify the device name from the dropdown along with
the capture antenna configuration.

If using an NI USRP hardware with Wireless Testbench, click Update to see your saved radio setup
configuration name appear at the top of the dropdown list.

if useSDR %#ok<*UNRCH>
 deviceOptions = getDeviceOptions;

 deviceName = ;
 antennaOptions = getAntennaOptions(deviceName);

 antennaSelection = ;
end

Specify Capture Parameters and Initiate Capture

After configuring deviceName and antennaSelection, specify the frequency band, channel
number, capture duration, expected channel bandwidth of packets, radio sample rate, and radio gain.

To determine which channels in the 5 GHz band contain traffic from commercial 802.11 hardware,
use the “OFDM Beacon Receiver Using Software-Defined Radio” on page 10-33 example for
Communication Toolbox Support Package radios or the “OFDM Wi-Fi Scanner Using SDR Preamble
Detection” on page 10-20 example for Wireless Testbench radios.

if useSDR

 frequencyBand = ; % Frequency band

 channelNumber = ; % WLAN channel number

 captureTime = ; % Signal capture duration, to be specified as a duration type (e.g. seconds(1))

 chanBW = ; % Channel bandwidth of all packets within the waveform

 sr = ; % Radio sample rate

 gain = ; % Radio gain

 % Set the center frequency to the corresponding channel number. The
 % center frequency should be centered on the channel bandwidth.
 fc = wlanChannelFrequency(channelNumber,frequencyBand);

 % Create SDR variable (if one does not exist already) and initiate waveform capture
 if ~exist('rx','var')
 rx = [];
 end

 Recover and Analyze Packets in 802.11 Waveform

4-3

 rx = getSDRObject(deviceName,antennaSelection,fc,sr,gain,rx);
 rxWaveform = capture(rx,captureTime);
end

Import a Captured Waveform from a File

If using a precaptured waveform as the data source, this section shows how to load I/Q data from an
existing binary file using comm.BasebandFileReader. The baseband file format includes the sample
rate and the number of channels in the captured waveform. Alternatively, you can load the waveform
from a MAT file.

% Configure the analysis source
if ~useSDR
 BBR = comm.BasebandFileReader('wlanWaveform.bb'); % Create a baseband file reader object
 chanBW = 'CBW20'; % Channel bandwidth of all packets within the waveform
 bbrInfo = info(BBR);
 BBR.SamplesPerFrame = bbrInfo.NumSamplesInData; % Number of samples in the waveform
 rxWaveform = BBR(); % Load the I&Q sample from a binary file
 sr = BBR.SampleRate; % Sampling rate of the input signal
 release(BBR);
end

To recover beacon packets from a MAT-file, see the “OFDM Beacon Receiver Using Software-Defined
Radio” on page 10-33 example.

Signal Recovery and Analysis

This section detects, analyzes, and displays a summary of the detected packets. All packets in the
waveform must have the specified channel bandwidth. Parse and analyze the packets within a
waveform by using the WaveformAnalyzer object.

analyzer = WaveformAnalyzer;
process(analyzer,rxWaveform,chanBW,sr);

Display a summary of the detected packets.

detectionSummary(analyzer);

 Summary of the Detected Packets

detSummary=11×9 table
 Number Format PHY Status Power (dBm) CFO (Hz) Offset (samples) MAC Contents RMS EVM (dB) Max EVM (dB)
 ______ ________ __________ ___________ ________ ________________ ____________ ____________ ____________

 1 "Non-HT" "Success" 12.7 61431 97 "Beacon" -25.824 -17.272
 2 "Non-HT" "Success" 13.08 -39757 2577 "RTS" -24.937 -17.737
 3 "Non-HT" "Success" 13.01 62250 4017 "CTS" -26.181 -18.982
 4 "HE-MU" "Success" 14.98 -39660 5297 "A-MPDU" -25.353 -12.353
 5 "Non-HT" "Success" 13.04 -39437 18657 "Block Ack" -25.564 -17.118
 6 "Non-HT" "Success" 13.07 -29899 20417 "RTS" -25.082 -16.625
 7 "Non-HT" "Success" 13.01 52489 21857 "CTS" -26.118 -18.372
 8 "VHT" "Success" 17.43 62290 23137 "A-MPDU" -20.9 -10.955
 9 "Non-HT" "Success" 14.99 -38861 28337 "RTS" -27.842 -20.114
 10 "Non-HT" "Success" 14.94 42363 29777 "CTS" -27.409 -19.042
 11 "HT-MF" "Success" 15.03 22238 31058 "A-MPDU" -26.55 -17.287

Use the pktNum variable to display the MAC and PHY analysis for a selected packet.

4 Signal Reception

4-4

pktNum = ;

Display the MAC information of the selected packet.

macSummary(analyzer,pktNum);

 Recovered MPDU Summary of Packet 4

 AMPDU/MPDU Number STAID Address1 Address2 AMPDU/MPDU Decode Status MAC Frame Type
 _________________ _____ ______________ ______________ ________________________ ______________

 "AMPDU1_MPDU1" 1 "1342ABC2FF1F" "00123456789B" "Success" "QoS Data"
 "AMPDU2_MPDU1" 2 "23FFAB1234AC" "00123456789B" "Success" "QoS Data"
 "AMPDU3_MPDU1" 3 "13EF35781356" "00123456789B" "Success" "QoS Data"
 "AMPDU4_MPDU1" 4 "159A123AFFFF" "00123456789B" "Success" "QoS Data"

Display the time samples and spectrum of the detected packet.

plotWaveform(analyzer,pktNum)

 Recover and Analyze Packets in 802.11 Waveform

4-5

Display the packet field information of the selected packet.

fieldSummary(analyzer,pktNum);

 Field Summary of Packet 4 (HE-MU)

 Field Name Modulation Num Symbols Parity Check/CRC Power (dBm) RMS EVM (dB) Max EVM (dB)
 __________ __________ ___________ ________________ ___________ ____________ ____________

 L-STF BPSK 2 14.59
 L-LTF BPSK 2 14.61
 L-SIG BPSK 1 Pass 14.96 -27.59 -22.62
 RL-SIG BPSK 1 Pass 14.86 -27.14 -19.87
 HE-SIG-A BPSK 2 Pass 15.37 -26.14 -19.54
 HE-SIG-B BPSK 5 Pass 14.98 -27.56 -20.08
 HE-STF BPSK 1 14.95
 HE-LTF BPSK 2 15.01
 Data 35 14.99 -25.35 -12.35

Display the signaling field information of the selected packet.

signalingSummary(analyzer,pktNum);

 Signaling Field Summary of Packet 4 (HE-MU)

 Property Value Property Value Property Value

4 Signal Reception

4-6

 ________________ _____ ____________________ _____ ______________________ _____

 L-SIG Length 467 Bandwidth CBW20 Num HE-LTF Symbols 2
 L-SIG Rate 0xB Num HE-SIG-B Symbols 5 LDPC Extra Symbol True
 UL/DL Indication DL SIGB Compression False STBC False
 SIGB MCS 0 Guard Interval 3.2 Pre-FEC Padding Factor 1
 SIGB DCM False HE-LTF Type 4 PE Disambiguity False
 BSS Color 0 Doppler False
 Spatial Reuse 0 TXOP 127

Display the RU information.

ruSummary(analyzer,pktNum);

 Resource Unit (RU) Information of Packet 4 (HE-MU)

 RU Number RU Size Subcarrier Index (Start) Subcarrier Index (End) Num Users Num STS Power (dBm)
 _________ _______ ________________________ ______________________ _________ _______ ___________

 "RU1" 52 -121 -70 1 1 8.98
 "RU2" 52 -68 -17 1 1 8.96
 "RU3" 52 17 68 1 2 8.97
 "RU4" 52 70 121 1 1 8.97

Display the user information.

userSummary(analyzer,pktNum);

 User Information of Packet 4 (HE-MU)

 STAID RU Number MCS Modulation Code Rate DCM Channel Coding Num STS Transmit BeamForming
 _____ _________ ___ __________ _________ ___ ______________ _______ ____________________

 1 "RU1" 0 "BPSK" "1/2" 0 "LDPC" 1 0
 2 "RU2" 2 "QPSK" "3/4" 0 "LDPC" 1 0
 3 "RU3" 4 "16QAM" "3/4" 0 "LDPC" 2 0
 4 "RU4" 6 "64QAM" "3/4" 0 "LDPC" 1 0

Display EVM per spatial streams for all users.

userEVM(analyzer,pktNum);

 User EVM per Spatial Stream of Packet 4 (HE-MU)

 STAID Spatial Stream Index RMS EVM (dB) Max EVM (dB)
 _____ ____________________ ____________ ____________

 1 1 -26.391 -17.295
 2 1 -27.401 -19.682
 3 1 -23.564 -12.353
 3 2 -23.122 -14.444
 4 1 -27.278 -17.793

Plot the constellation for all users.

plotConstellation(analyzer,pktNum);

 Recover and Analyze Packets in 802.11 Waveform

4-7

Plot the EVM.

plotEVM(analyzer,pktNum);

4 Signal Reception

4-8

 Recover and Analyze Packets in 802.11 Waveform

4-9

Plot the spectral flatness for non-OFDMA packets.

plotSpectralFlatness(analyzer,chanBW,pktNum);

Further Exploration

The WaveformAnalyzer provides properties to control the pilot tracking, equalization, DC blocking,
and packet detection algorithms that can be tweaked to improve packet detection and analysis
performance.

False packet detections

False packet detections are detected packets that you do not believe are actual packets. Evaluating
the time domain waveform of the packet is one way to determine if the detected packet is legitimate.
If there is a significant number of false detections present these techniques may help reduce them:

• Enable the EnergyDetection property and set the EnergyDetectionThreshold property to a
suitable value given the noise floor of the capture device. When enabled, EnergyDetection only
detects packets with a power exceeding EnergyDetectionThreshold during the preamble.

• Increase the LLTFSNRDetectionThreshold and PacketDetectionThreshold properties to
discard packets with a low measured SNR during detection.

Missed packet detections

Missed packet detections are packets that you believe are in the waveform but have not been
detected.

4 Signal Reception

4-10

• One possible reason a packet detection may have been missed is if a false detection occurred
earlier in the waveform, but the L-SIG check passed, causing samples to be skipped. To search
within possible false detections, enable the SearchWithinUnsupportedPacket property.

• Alternatively try decreasing the PacketDetectionThreshold property to detect packet with
low SNR during detection.

For detail on 802.11ax and 802.11ac signal recovery and processing, see the “Recovery Procedure for
an 802.11ax Packet” on page 4-13 and “Recovery Procedure for an 802.11ac Packet” on page 4-30
examples.

References

1 IEEE Std 802.11™ - 2020 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 IEEE 802.11ax™ - 2021 IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

Local Functions

These functions assist in SDR set up.

function options = getDeviceOptions
% GETDEVICEOPTIONS returns a string array with all saved Wireless
% Testbench radio configurations and Communication toolbox support package
% SDRs
spkgSDRs = getSupportPackageSDRs;

% Check for WT configurations if user has WT installed and a valid license
if ~isempty(ver('wt')) && license('test','Wireless_Testbench')
 savedRadioConfigurations = radioConfigurations;
 savedRadioConfigurationNames = [string({savedRadioConfigurations.Name})];
else
 savedRadioConfigurationNames = [];
end

options = [savedRadioConfigurationNames spkgSDRs];
end

function options = getAntennaOptions(deviceName)
%GETANTENNAOPTIONS returns a string array of valid antenna configurations
%for a specified DEVICENAME
% Acquire valid antenna values based on radio
if ~matches(deviceName,getSupportPackageSDRs)
 antennas = hCaptureAntennas(deviceName);
elseif matches(deviceName,["X300","FMCOMMS5"])
 antennas = [1 2 3 4]';
elseif matches(deviceName,["Pluto", "B200", "N200/N210/USRP2"])
 antennas = 1;
else
 antennas = [1 2]';

 Recover and Analyze Packets in 802.11 Waveform

4-11

end

% Generate a string array list of all valid antenna configurations
options = strings(0,1);
for a = 1:length(antennas)
 % Generate unique combinations
 AntennaCombinations = nchoosek(antennas,a);
 % Generate list of all unique combinations
 for i = 1:size(AntennaCombinations, 1)
 options = [options;string(mat2str(AntennaCombinations(i,:)))]; %#ok<AGROW>
 end
end
end

function spkgSDRs = getSupportPackageSDRs
%GETSUPPORTPACKAGESDRs returns a string array of Communication Toolbox
%support package SDRs that are supported for this example
spkgSDRs = ["Pluto" "AD936x" "FMCOMMS5" "E3xx" "B200" "B210" "N200/N210/USRP2" "X300"];
end

function rx = getSDRObject(deviceName,antennas,fc,sr,gain,rx)
%GETSDROBJECT returns a Wireless Testbench basebandReceiver object
%or an hSDRReceiver object with the properties of the object set according
%to the input parameters

% Create SDR object for waveform capture and set object's properties
if matches(deviceName,getSupportPackageSDRs)
 rx = hSDRReceiver(deviceName);
 rx.OutputDataType = 'double';
 rx.ChannelMapping = eval(antennas);
 rx.Gain = gain;
else % Wireless Testbench hardware
 % Keep existing basebandReceiver object for performance purposes
 if ~isa(rx,'basebandReceiver')
 rx = basebandReceiver(deviceName);
 end
 rx.CaptureDataType = 'double';
 rx.Antennas = eval(antennas);
 rx.RadioGain = gain;
end
rx.SampleRate = sr;
rx.CenterFrequency = fc;
end

4 Signal Reception

4-12

Recovery Procedure for an 802.11ax Packet

This example shows how to detect a packet and decode payload bits in a received IEEE® 802.11ax™
waveform. The receiver recovers the packet format parameters from the preamble fields to decode
the data field and the MAC frame.

Introduction

In an 802.11ax packet the transmission parameters are signaled to the receiver using the L-SIG, HE-
SIG-A, and HE-SIG-B preamble fields [1]:

• The L-SIG field contains information to allow the receiver to determine the transmission time of
the packet.

• The HE-SIG-A field contains common transmission parameters for HE-MU users and all
transmission parameters for HE-SU and HE-EXT-SU packets.

• The combination of length information in the L-SIG field, the modulation type, and the number of
OFDM symbols in the HE-SIG-A field determines the HE packet format.

• The HE-SIG-B field contains Resource unit (RU) allocation information and the transmission
parameters for the users in an HE-MU packet.

In this example we detect and decode an HE-MU packet within a generated waveform. This example
can also recover HE-SU and HE-EXT-SU packets. All transmission parameters apart from the channel
bandwidth are assumed to be unknown and are therefore retrieved from the decoded L-SIG, HE-SIG-
A, and HE-SIG-B preamble fields. The recovered transmission parameters are used to decode the HE-
Data field. Additionally, the following analysis is performed:

• The waveform of the detected packet is recovered and displayed.
• The spectrum of the detected packet is recovered and displayed.
• The constellation of the equalized data symbols for all spatial streams is displayed.
• The Error Vector Magnitude (EVM) of each field is measured.
• An A-MPDU is detected and Frame Check Sequence (FCS) is determined for the recovered MAC

frame.
• The EVM per data symbol and spatial stream averaged over subcarriers is displayed.
• The EVM per data subcarrier and spatial stream averaged over symbols is displayed.

Waveform Transmission

In this example an 802.11ax HE-MU waveform is synthesized but you can use a captured waveform.
You can use MATLAB® to acquire I/Q data from a wide range of instruments with the Instrument
Control Toolbox™ and software defined radio platforms.

The synthesized waveform is impaired by a 2x2 TGax indoor fading channel, additive white Gaussian
noise, and carrier frequency offset. To generate an HE-MU waveform we configure an HE-MU format
configuration object wlanHEMUConfig. Note that the wlanHEMUConfig configuration object is used
at the transmitter side only. The receiver will formulate an HE recovery configuration object
wlanHERecoveryConfig. The unknown properties of the HE recovery configuration object are set
after decoding the information bits in the L-SIG, HE-SIG-A, and HE-SIG-B fields. The helper function
heSigRecGenerateWaveform generates the impaired waveform. The following processing steps are
performed:

 Recovery Procedure for an 802.11ax Packet

4-13

• A random payload of MSDUs is created for the MAC frame, which is encoded into an HE-MU
packet.

• The waveform is passed through a TGax indoor fading channel model.
• Carrier frequency offset (CFO) and Additive white Gaussian noise (AWGN) are added to the

waveform.

% A mixed OFDMA and MU-MIMO configuration is defined for an HE-MU packet.
% The allocation index 17 defines two 52-tone RUs, with one user in each
% RU, and one 106-tone RU. The 106-tone RU has two users in a MU-MIMO
% configuration.
cfgMU = wlanHEMUConfig(17);
cfgMU.NumTransmitAntennas = 2;

% Configure RU 1 and user 1
cfgMU.RU{1}.SpatialMapping = 'Direct';
cfgMU.User{1}.STAID = 1;
cfgMU.User{1}.APEPLength = 1e3;
cfgMU.User{1}.MCS = 5;
cfgMU.User{1}.NumSpaceTimeStreams = 2;
cfgMU.User{1}.ChannelCoding = 'LDPC';

% Configure RU 2 and user 2
cfgMU.RU{2}.SpatialMapping = 'Fourier';
cfgMU.User{2}.STAID = 2;
cfgMU.User{2}.APEPLength = 500;
cfgMU.User{2}.MCS = 4;
cfgMU.User{2}.NumSpaceTimeStreams = 1;
cfgMU.User{2}.ChannelCoding = 'BCC';

% Configure RU 3 and user 1
cfgMU.RU{3}.SpatialMapping = 'Fourier';
cfgMU.User{3}.STAID = 3;
cfgMU.User{3}.APEPLength = 100;
cfgMU.User{3}.MCS = 2;
cfgMU.User{3}.NumSpaceTimeStreams = 1;
cfgMU.User{3}.ChannelCoding = 'BCC';

% Configure RU 3 and user 2
cfgMU.User{4}.STAID = 4;
cfgMU.User{4}.APEPLength = 500;
cfgMU.User{4}.MCS = 3;
cfgMU.User{4}.NumSpaceTimeStreams = 1;
cfgMU.User{4}.ChannelCoding = 'LDPC';

% Specify propagation channel
numRx = 2; % Number of receive antennas
delayProfile = 'Model-D'; % TGax channel delay profile

% Specify impairments
noisePower = -40; % Noise power to apply in dBW
cfo = 62e3; % Carrier frequency offset Hz

% Generate waveform
rx = heSigRecGenerateWaveform(cfgMU,numRx,delayProfile,noisePower,cfo);

4 Signal Reception

4-14

Packet Recovery

The signal to process is stored in the variable rx. The processing steps to recover a packet are:

• An HE recovery configuration object, wlanHERecoveryConfig is created. The object properties are
updated as preamble fields are decoded.

• The packet is detected and synchronized.
• The L-LTF is extracted and demodulated. The demodulated L-LTF symbols do not include tone

rotation for each 20 MHz segment as described in [2], section 21.3.7.5.
• The demodulated L-LTF symbols are used for channel and noise estimates.
• The time-domain signal containing samples equivalent to four OFDM symbols immediately

following the L-LTF are used to determine the HE packet format. The packet format is updated in
the wlanHERecoveryConfig object.

• The L-LTF is demodulated. The demodulated L-LTF symbols include tone rotation for each 20 MHz
segment as described in [2], section 21.3.7.5. The L-LTF channel estimates (with tone rotation)
are used to decode the pre-HE-LTF.

• The L-SIG and RL-SIG fields are extracted. The channel is estimated on an extra four subcarriers
per subchannel in the L-SIG and RL-SIG fields. The L-LTF channel estimates are updated to
include the channel estimates on the extra subcarriers.

• The information bits in the L-SIG field are recovered to determine the length of the packet in
microseconds.

• After HE-SIG-A decoding, the recovery configuration object is updated with common transmission
parameters for an HE-MU packet and all transmission parameters for HE-SU and HE-EXT-SU
packets.

• For an HE-MU packet format the HE-SIG-B field is decoded. For a non-compressed SIGB
waveform the HE-SIG-B common field is decoded first followed by HE-SIG-B user field. For a
compressed SIGB waveform only the HE-SIG-B user field is decoded.

• For an HE-MU format without SIGB compression the RU allocation and user transmission
parameters are recovered from the HE-SIG-B field. For a compressed SIGB waveform the RU
allocation information is inferred from HE-SIG-A field and the user transmission parameters are
determined from the HE-SIG-B user field bits.

• The wlanHERecoveryConfig object is created using the recovered transmission parameters for
each user after HE-SIG-B decoding.

• The HE-LTF field is extracted and demodulated. The demodulated symbols are used for channel
estimation of the subcarriers allocated to the user of interest. The MIMO channel estimates are
used to decode the HE-Data field.

• The HE-Data field is extracted and the PSDU bits are recovered using the wlanHERecoveryConfig
object for each user.

• Detect A-MPDU within the recovered PSDU and check the FCS for the recovered MAC frame.

Setup Waveform Recovery Parameters

In this example all transmission parameters apart from the channel bandwidth are assumed to be
unknown and will be recovered. A recovery configuration object, wlanHERecoveryConfig, is created
to store the recovered information in the L-SIG, HE-SIG-A, and HE-SIG-B preamble fields. The
transmission properties in wlanHERecoveryConfig are updated after subsequent decoding of the
preamble fields. The following code configures objects and variables for processing.

chanBW = cfgMU.ChannelBandwidth; % Assume channel bandwidth is known
sr = wlanSampleRate(cfgMU); % Sample rate

 Recovery Procedure for an 802.11ax Packet

4-15

% Specify pilot tracking method for recovering the data field. This can be:
% 'Joint' - use joint common phase error and sample rate offset tracking
% 'CPE' - use only common phase error tracking
% When recovering 26-tone RUs only CPE tracking is used as the joint
% tracking algorithm is susceptible to noise.
pilotTracking = 'Joint';

% Create an HE recovery configuration object and set the channel bandwidth
cfgRx = wlanHERecoveryConfig;
cfgRx.ChannelBandwidth = chanBW;

% The recovery configuration object is used to get the start and end
% indices of the pre-HE-SIG-B field.
ind = wlanFieldIndices(cfgRx);

% Setup plots for the example
[spectrumAnalyzer,timeScope,ConstellationDiagram,EVMPerSubcarrier,EVMPerSymbol] = heSigRecSetupPlots(sr);

% Minimum packet length is 10 OFDM symbols
lstfLength = double(ind.LSTF(2));
minPktLen = lstfLength*5; % Number of samples in L-STF

rxWaveLen = size(rx,1);

Front-End Processing

The front-end processing consists of packet detection, coarse carrier frequency offset correction,
timing synchronization, and fine carrier frequency offset correction. A while loop is used to detect
and synchronize a packet within the received waveform. The sample offset searchOffset is used to
index into rx to detect a packet. The first packet within rx is detected and processed. If the
synchronization fails for the detected packet, the sample index offset searchOffset is incremented
to move beyond the processed packet in rx. This is repeated until a packet has been successfully
detected and synchronized.

searchOffset = 0; % Offset from start of waveform in samples
while (searchOffset + minPktLen) <= rxWaveLen
 % Packet detection
 pktOffset = wlanPacketDetect(rx,chanBW,searchOffset);

 % Adjust packet offset
 pktOffset = searchOffset + pktOffset;
 if isempty(pktOffset) || (pktOffset + ind.LSIG(2) > rxWaveLen)
 error('** No packet detected **');
 end

 % Coarse frequency offset estimation and correction using L-STF
 rxLSTF = rx(pktOffset+(ind.LSTF(1):ind.LSTF(2)), :);
 coarseFreqOffset = wlanCoarseCFOEstimate(rxLSTF,chanBW);
 rx = frequencyOffset(rx,sr,-coarseFreqOffset);

 % Symbol timing synchronization
 searchBufferLLTF = rx(pktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 pktOffset = pktOffset+wlanSymbolTimingEstimate(searchBufferLLTF,chanBW);

 % Fine frequency offset estimation and correction using L-STF
 rxLLTF = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);

4 Signal Reception

4-16

 fineFreqOffset = wlanFineCFOEstimate(rxLLTF,chanBW);
 rx = frequencyOffset(rx,sr,-fineFreqOffset);

 % Timing synchronization complete: packet detected
 fprintf('Packet detected at index %d\n',pktOffset + 1);

 % Display estimated carrier frequency offset
 cfoCorrection = coarseFreqOffset + fineFreqOffset; % Total CFO
 fprintf('Estimated CFO: %5.1f Hz\n\n',cfoCorrection);

 break; % Front-end processing complete, stop searching for a packet
end

% Scale the waveform based on L-STF power (AGC)
gain = 1./(sqrt(mean(rxLSTF.*conj(rxLSTF))));
rx = rx.*gain;

Packet detected at index 404
Estimated CFO: 61942.9 Hz

Packet Format Detection

The time-domain samples equivalent to four OFDM symbols immediately following the L-LTF are used
to determine the HE packet format [1 Figure. 27-63]. The L-LTF is extracted and demodulated. For
format detection, the demodulated L-LTF symbols must not include tone rotation for each 20 MHz
segment as described in [2], section 21.3.7.5. The demodulated L-LTF is used for channel and noise
estimation. The L-LTF channel (without tone rotation) and noise power estimates are used to detect
the packet format.

rxLLTF = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
lltfDemod = wlanLLTFDemodulate(rxLLTF,chanBW);
lltfChanEst = wlanLLTFChannelEstimate(lltfDemod,chanBW);
noiseVar = wlanLLTFNoiseEstimate(lltfDemod);

disp('Detect packet format...');
rxSIGA = rx(pktOffset+(ind.LSIG(1):ind.HESIGA(2)),:);
pktFormat = wlanFormatDetect(rxSIGA,lltfChanEst,noiseVar,chanBW);
fprintf(' %s packet detected\n\n',pktFormat);

% Set the packet format in the recovery object and update the field indices
cfgRx.PacketFormat = pktFormat;
ind = wlanFieldIndices(cfgRx);

Detect packet format...
 HE-MU packet detected

L-LTF Channel Estimate

Demodulate the L-LTF and perform channel estimation. The demodulated L-LTF symbols include tone
rotation for each 20 MHz segment as described in [2], section 21.3.7.5. The L-LTF channel estimates
(with tone rotation) are used to equalize and decode the pre-HE-LTF fields.

lltfDemod = wlanHEDemodulate(rxLLTF,'L-LTF',chanBW);
lltfChanEst = wlanLLTFChannelEstimate(lltfDemod,chanBW);

 Recovery Procedure for an 802.11ax Packet

4-17

L-SIG and RL-SIG Decoding

The L-SIG field is used to determine the receive time, or RXTIME, of the packet. The RXTIME is
calculated using the length bits of the L-SIG payload. The L-SIG and RL-SIG fields are recovered to
perform the channel estimate on the extra subcarriers in the L-SIG and RL-SIG fields. The
lltfChanEst channel estimates are updated to include the channel estimates on extra subcarriers
in the L-SIG and RL-SIG fields. The L-SIG payload is decoded using an estimate of the channel and
noise power obtained from the L-LTF field. The L-SIG length property in wlanHERecoveryConfig is
updated after L-SIG decoding.

disp('Decoding L-SIG... ');
% Extract L-SIG and RL-SIG fields
rxLSIG = rx(pktOffset+(ind.LSIG(1):ind.RLSIG(2)),:);

% OFDM demodulate
helsigDemod = wlanHEDemodulate(rxLSIG,'L-SIG',chanBW);

% Estimate CPE and phase correct symbols
helsigDemod = wlanHETrackPilotError(helsigDemod,lltfChanEst,cfgRx,'L-SIG');

% Estimate channel on extra 4 subcarriers per subchannel and create full
% channel estimate
preheInfo = wlanHEOFDMInfo('L-SIG',chanBW);
preHEChanEst = wlanPreHEChannelEstimate(helsigDemod,lltfChanEst,chanBW);

% Average L-SIG and RL-SIG before equalization
helsigDemod = mean(helsigDemod,2);

% Equalize data carrying subcarriers, merging 20 MHz subchannels
[eqLSIGSym,csi] = preHESymbolEqualize(helsigDemod(preheInfo.DataIndices,:,:), ...
 preHEChanEst(preheInfo.DataIndices,:,:),noiseVar,preheInfo.NumSubchannels);

% Decode L-SIG field
[~,failCheck,lsigInfo] = wlanLSIGBitRecover(eqLSIGSym,noiseVar,csi);

if failCheck
 disp(' ** L-SIG check fail **');
else
 disp(' L-SIG check pass');
end
% Get the length information from the recovered L-SIG bits and update the
% L-SIG length property of the recovery configuration object
lsigLength = lsigInfo.Length;
cfgRx.LSIGLength = lsigLength;

% Measure EVM of L-SIG symbols
EVM = comm.EVM;
EVM.ReferenceSignalSource = 'Estimated from reference constellation';
EVM.Normalization = 'Average constellation power';
EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK');
rmsEVM = EVM(eqLSIGSym);
fprintf(' L-SIG EVM: %2.2fdB\n\n',20*log10(rmsEVM/100));

% Calculate the receive time and corresponding number of samples in the
% packet
RXTime = ceil((lsigLength + 3)/3) * 4 + 20; % In microseconds
numRxSamples = round(RXTime * 1e-6 * sr); % Number of samples in time

4 Signal Reception

4-18

fprintf(' RXTIME: %dus\n',RXTime);
fprintf(' Number of samples in the packet: %d\n\n',numRxSamples);

Decoding L-SIG...
 L-SIG check pass
 L-SIG EVM: -36.91dB

 RXTIME: 536us
 Number of samples in the packet: 10720

The waveform and spectrum of the detected packet within rx is displayed given the calculated
RXTIME and corresponding number of samples.

sampleOffset = max((-lstfLength + pktOffset),1); % First index to plot
sampleSpan = numRxSamples + 2*lstfLength; % Number samples to plot
% Plot as much of the packet (and extra samples) as we can
plotIdx = sampleOffset:min(sampleOffset + sampleSpan,rxWaveLen);

% Configure timeScope to display the packet
timeScope.TimeSpan = sampleSpan/sr;
timeScope.TimeDisplayOffset = sampleOffset/sr;
timeScope.YLimits = [0 max(abs(rx(:)))];
timeScope(abs(rx(plotIdx,:)));
release(timeScope);

% Display the spectrum of the detected packet
spectrumAnalyzer(rx(pktOffset + (1:numRxSamples),:));
release(spectrumAnalyzer);

 Recovery Procedure for an 802.11ax Packet

4-19

4 Signal Reception

4-20

HE-SIG-A Decoding

The HE-SIG-A field contains the transmission configuration of an HE packet. An estimate of the
channel and noise power obtained from the L-LTF is required to decode the HE-SIG-A field.

disp('Decoding HE-SIG-A...')
rxSIGA = rx(pktOffset+(ind.HESIGA(1):ind.HESIGA(2)),:);
sigaDemod = wlanHEDemodulate(rxSIGA,'HE-SIG-A',chanBW);
hesigaDemod = wlanHETrackPilotError(sigaDemod,preHEChanEst,cfgRx,'HE-SIG-A');

% Equalize data carrying subcarriers, merging 20 MHz subchannels
preheInfo = wlanHEOFDMInfo('HE-SIG-A',chanBW);
[eqSIGASym,csi] = preHESymbolEqualize(hesigaDemod(preheInfo.DataIndices,:,:), ...
 preHEChanEst(preheInfo.DataIndices,:,:), ...
 noiseVar,preheInfo.NumSubchannels);
% Recover HE-SIG-A bits
[sigaBits,failCRC] = wlanHESIGABitRecover(eqSIGASym,noiseVar,csi);

% Perform the CRC on HE-SIG-A bits
if failCRC
 disp(' ** HE-SIG-A CRC fail **');
else
 disp(' HE-SIG-A CRC pass');
end

% Measure EVM of HE-SIG-A symbols
release(EVM);

 Recovery Procedure for an 802.11ax Packet

4-21

if strcmp(pktFormat,'HE-EXT-SU')
 % The second symbol of an HE-SIG-A field for an HE-EXT-SU packet is
 % QBPSK.
 EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK',[0 pi/2 0 0]);
 % Account for scaling of L-LTF for an HE-EXT-SU packet
 rmsEVM = EVM(eqSIGASym*sqrt(2));
else
 EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK');
 rmsEVM = EVM(eqSIGASym);
end
fprintf(' HE-SIG-A EVM: %2.2fdB\n\n',20*log10(mean(rmsEVM)/100));

Decoding HE-SIG-A...
 HE-SIG-A CRC pass
 HE-SIG-A EVM: -35.17dB

Interpret Recovered HE-SIG-A bits

The wlanHERecoveryConfig object is updated after interpreting the recovered HE-SIG-A bits.

cfgRx = interpretHESIGABits(cfgRx,sigaBits);
ind = wlanFieldIndices(cfgRx); % Update field indices

Display the common transmission configuration obtained from HE-SIG-A field for an HE-MU packet.
The properties indicated by -1 are unknown or undefined. The unknown user-related properties are
updated after successful decoding of the HE-SIG-B field.

disp(cfgRx)

 wlanHERecoveryConfig with properties:

 PacketFormat: 'HE-MU'
 ChannelBandwidth: 'CBW20'
 LSIGLength: 383
 SIGBCompression: 0
 SIGBMCS: 0
 SIGBDCM: 0
 NumSIGBSymbolsSignaled: 5
 STBC: 0
 LDPCExtraSymbol: 0
 PreFECPaddingFactor: 4
 PEDisambiguity: 0
 GuardInterval: 3.2000
 HELTFType: 4
 NumHELTFSymbols: 2
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0
 AllocationIndex: -1
 NumUsersPerContentChannel: -1
 RUTotalSpaceTimeStreams: -1
 RUSize: -1
 RUIndex: -1
 STAID: -1
 MCS: -1

4 Signal Reception

4-22

 DCM: -1
 ChannelCoding: 'Unknown'
 Beamforming: -1
 NumSpaceTimeStreams: -1
 SpaceTimeStreamStartingIndex: -1

HE-SIG-B Decoding

For an HE-MU packet the HE-SIG-B field contains:

• The RU allocation information for a non-compressed SIGB waveform is inferred from HE-SIG-B
Common field [1 Table. 27-24]. For a compressed SIGB waveform the RU allocation information is
inferred from the recovered HE-SIG-A bits.

• For a non-compressed SIGB waveform the number of HE-SIG-B symbols are updated in the
wlanHERecoveryConfig object. The symbols are only updated if the number of HE-SIG-B symbols
indicated in the HE-SIG-A field is set to 15 and all content channels pass the CRC. The number of
HE-SIG-B symbols indicated in the HE-SIG-A field are not updated if any HE-SIG-B content
channel fails the CRC.

• The user transmission parameters for both SIGB compressed and non-compressed waveforms are
inferred from the HE-SIG-B user field [1 Table. 27-27, 27-28].

An estimate of the channel and noise power obtained from the L-LTF is required to decode the HE-
SIG-B field.

if strcmp(pktFormat,'HE-MU')
 fprintf('Decoding HE-SIG-B...\n');
 if ~cfgRx.SIGBCompression
 fprintf(' Decoding HE-SIG-B common field...\n');
 s = getSIGBLength(cfgRx);
 % Get common field symbols. The start of HE-SIG-B field is known
 rxSym = rx(pktOffset+(double(ind.HESIGA(2))+(1:s.NumSIGBCommonFieldSamples)),:);
 % Decode HE-SIG-B common field
 [status,cfgRx] = heSIGBCommonFieldDecode(rxSym,preHEChanEst,noiseVar,cfgRx);

 % CRC on HE-SIG-B content channels
 if strcmp(status,'Success')
 fprintf(' HE-SIG-B (common field) CRC pass\n');
 elseif strcmp(status,'ContentChannel1CRCFail')
 fprintf(' ** HE-SIG-B CRC fail for content channel-1\n **');
 elseif strcmp(status,'ContentChannel2CRCFail')
 fprintf(' ** HE-SIG-B CRC fail for content channel-2\n **');
 elseif any(strcmp(status,{'UnknownNumUsersContentChannel1','UnknownNumUsersContentChannel2'}))
 error(' ** Unknown packet length, discard packet\n **');
 else
 % Discard the packet if all HE-SIG-B content channels fail
 error(' ** HE-SIG-B CRC fail **');
 end
 % Update field indices as the number of HE-SIG-B symbols are
 % updated
 ind = wlanFieldIndices(cfgRx);
 end

 % Get complete HE-SIG-B field samples
 rxSIGB = rx(pktOffset+(ind.HESIGB(1):ind.HESIGB(2)),:);
 fprintf(' Decoding HE-SIG-B user field... \n');

 Recovery Procedure for an 802.11ax Packet

4-23

 % Decode HE-SIG-B user field
 [failCRC,cfgUsers] = heSIGBUserFieldDecode(rxSIGB,preHEChanEst,noiseVar,cfgRx);

 % CRC on HE-SIG-B users
 if ~all(failCRC)
 fprintf(' HE-SIG-B (user field) CRC pass\n\n');
 numUsers = numel(cfgUsers);
 elseif all(failCRC)
 % Discard the packet if all users fail the CRC
 error(' ** HE-SIG-B CRC fail for all users **');
 else
 fprintf(' ** HE-SIG-B CRC fail for at least one user\n **');
 % Only process users with valid CRC
 numUsers = numel(cfgUsers);
 end

else % HE-SU, HE-EXT-SU
 cfgUsers = {cfgRx};
 numUsers = 1;
end

Decoding HE-SIG-B...
 Decoding HE-SIG-B common field...
 HE-SIG-B (common field) CRC pass
 Decoding HE-SIG-B user field...
 HE-SIG-B (user field) CRC pass

HE-Data Decoding

The updated wlanHERecoveryConfig object for each user can then be used to recover the PSDU bits
for each user in the HE-Data field.

cfgDataRec = trackingRecoveryConfig;
cfgDataRec.PilotTracking = pilotTracking;

fprintf('Decoding HE-Data...\n');
for iu = 1:numUsers
 % Get recovery configuration object for each user
 user = cfgUsers{iu};
 if strcmp(pktFormat,'HE-MU')
 fprintf(' Decoding User:%d, STAID:%d, RUSize:%d\n',iu,user.STAID,user.RUSize);
 else
 fprintf(' Decoding RUSize:%d\n',user.RUSize);
 end

 heInfo = wlanHEOFDMInfo('HE-Data',chanBW,user.GuardInterval,[user.RUSize user.RUIndex]);

 % HE-LTF demodulation and channel estimation
 rxHELTF = rx(pktOffset+(ind.HELTF(1):ind.HELTF(2)),:);
 heltfDemod = wlanHEDemodulate(rxHELTF,'HE-LTF',chanBW,user.GuardInterval, ...
 user.HELTFType,[user.RUSize user.RUIndex]);
 [chanEst,pilotEst] = wlanHELTFChannelEstimate(heltfDemod,user);

 % Number of expected data OFDM symbols
 symLen = heInfo.FFTLength+heInfo.CPLength;
 numOFDMSym = double((ind.HEData(2)-ind.HEData(1)+1))/symLen;

4 Signal Reception

4-24

 % HE-Data demodulation with pilot phase and timing tracking
 % Account for extra samples when extracting data field from the packet
 % for sample rate offset tracking. Extra samples may be required if the
 % receiver clock is significantly faster than the transmitter.
 maxSRO = 120; % Parts per million
 Ne = ceil(numRxSamples*maxSRO*1e-6); % Number of extra samples
 Ne = min(Ne,rxWaveLen-numRxSamples); % Limited to length of waveform
 numRxSamplesProcess = numRxSamples+Ne;
 rxData = rx(pktOffset+(ind.HEData(1):numRxSamplesProcess),:);
 if user.RUSize==26
 % Force CPE only tracking for 26-tone RU as algorithm susceptible
 % to noise
 cfgDataRec.PilotTracking = 'CPE';
 else
 cfgDataRec.PilotTracking = pilotTracking;
 end
 [demodSym,cpe,peg] = heTrackingOFDMDemodulate(rxData,chanEst,numOFDMSym,user,cfgDataRec);

 % Estimate noise power in HE fields
 demodPilotSym = demodSym(heInfo.PilotIndices,:,:);
 nVarEst = heNoiseEstimate(demodPilotSym,pilotEst,user);

 % Equalize
 [eqSym,csi] = heEqualizeCombine(demodSym,chanEst,nVarEst,user);

 % Discard pilot subcarriers
 eqSymUser = eqSym(heInfo.DataIndices,:,:);
 csiData = csi(heInfo.DataIndices,:);

 % Demap and decode bits
 rxPSDU = wlanHEDataBitRecover(eqSymUser,nVarEst,csiData,user,'LDPCDecodingMethod','norm-min-sum');

 % Deaggregate the A-MPDU
 [mpduList,~,status] = wlanAMPDUDeaggregate(rxPSDU,wlanHESUConfig);
 if strcmp(status,'Success')
 fprintf(' A-MPDU deaggregation successful \n');
 else
 fprintf(' A-MPDU deaggregation unsuccessful \n');
 end

 % Decode the list of MPDUs and check the FCS for each MPDU
 for i = 1:numel(mpduList)
 [~,~,status] = wlanMPDUDecode(mpduList{i},wlanHESUConfig,'DataFormat','octets');
 if strcmp(status,'Success')
 fprintf(' FCS pass for MPDU:%d\n',i);
 else
 fprintf(' FCS fail for MPDU:%d\n',i);
 end
 end

 % Plot equalized constellation of the recovered HE data symbols for all
 % spatial streams per user
 hePlotEQConstellation(eqSymUser,user,ConstellationDiagram,iu,numUsers);

 % Measure EVM of HE-Data symbols
 release(EVM);
 EVM.ReferenceConstellation = wlanReferenceSymbols(user);
 rmsEVM = EVM(eqSymUser(:));

 Recovery Procedure for an 802.11ax Packet

4-25

 fprintf(' HE-Data EVM:%2.2fdB\n\n',20*log10(rmsEVM/100));

 % Plot EVM per symbol of the recovered HE data symbols
 hePlotEVMPerSymbol(eqSymUser,user,EVMPerSymbol,iu,numUsers);

 % Plot EVM per subcarrier of the recovered HE data symbols
 hePlotEVMPerSubcarrier(eqSymUser,user,EVMPerSubcarrier,iu,numUsers);
end

Decoding HE-Data...
 Decoding User:1, STAID:1, RUSize:52
 A-MPDU deaggregation successful
 FCS pass for MPDU:1
 HE-Data EVM:-28.61dB

 Decoding User:2, STAID:2, RUSize:52
 A-MPDU deaggregation successful
 FCS pass for MPDU:1
 HE-Data EVM:-39.94dB

 Decoding User:3, STAID:3, RUSize:106
 A-MPDU deaggregation successful
 FCS pass for MPDU:1
 HE-Data EVM:-28.22dB

 Decoding User:4, STAID:4, RUSize:106
 A-MPDU deaggregation successful
 FCS pass for MPDU:1
 HE-Data EVM:-31.44dB

4 Signal Reception

4-26

 Recovery Procedure for an 802.11ax Packet

4-27

4 Signal Reception

4-28

Selected Bibliography

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

2 IEEE Std 802.11™-2020 Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

 Recovery Procedure for an 802.11ax Packet

4-29

Recovery Procedure for an 802.11ac Packet

This example shows how to detect a packet and decode payload bits in a received IEEE® 802.11ac™
VHT waveform. The receiver recovers the packet format parameters from the preamble fields to
decode the data.

Introduction

In a single-user 802.11ac packet the transmission parameters are signaled to the receiver using the
L-SIG and VHT-SIG-A preamble fields [1]:

• The L-SIG field contains information to allow the receiver to determine the transmission time of a
packet.

• The VHT-SIG-A field contains the transmission parameters including the modulation and coding
scheme, number of space-time streams and channel coding.

In this example we detect and decode a packet within a generated waveform containing a valid MAC
frame with frame check sequence (FCS). All transmission parameters apart from the channel
bandwidth are assumed unknown and are therefore retrieved from the decoded L-SIG and VHT-SIG-A
preamble fields in each packet. The retrieved transmission configuration is used to decode the VHT-
SIG-B and VHT Data fields. Additionally the following analysis is performed:

• The waveform of the detected packet is displayed.
• The spectrum of the detected packet is displayed.
• The constellation of the equalized data symbols per spatial stream is displayed.
• The error vector magnitude (EVM) of each field is measured.

Waveform Transmission

In this example an 802.11ac VHT single-user waveform is generated locally but a captured waveform
could be used. MATLAB® can be used to acquire I/Q data from a wide range of instruments using the
Instrument Control Toolbox™ and software defined radio platforms.

The locally generated waveform is impaired by a 3x3 TGac fading channel, additive white Gaussian
noise, and carrier frequency offset. To generate a waveform locally we configure a VHT packet format
configuration object. Note that the VHT packet configuration object is used at the transmitter side
only. The receiver will dynamically formulate another VHT configuration object when the packet is
decoded. The helper function vhtSigRecGenerateWaveform generates the impaired waveform locally.
The processing steps within the helper function are:

• A valid MAC frame is generated and encoded into a VHT waveform.
• The waveform is passed through a TGac fading channel model.
• Carrier frequency offset is added to the waveform.
• Additive white Gaussian noise is added to the waveform.

% VHT link parameters
cfgVHTTx = wlanVHTConfig(...
 'ChannelBandwidth', 'CBW80', ...
 'NumTransmitAntennas', 3, ...
 'NumSpaceTimeStreams', 2, ...
 'SpatialMapping', 'Hadamard', ...

4 Signal Reception

4-30

 'STBC', true, ...
 'MCS', 5, ...
 'GuardInterval', 'Long', ...
 'APEPLength', 1052);

% Propagation channel
numRx = 3; % Number of receive antennas
delayProfile = 'Model-C'; % TGac channel delay profile

% Impairments
noisePower = -30; % Noise power to apply in dBW
cfo = 62e3; % Carrier frequency offset (Hz)

% Generated waveform parameters
numTxPkt = 1; % Number of transmitted packets
idleTime = 20e-6; % Idle time before and after each packet

% Generate waveform
rx = vhtSigRecGenerateWaveform(cfgVHTTx, numRx, ...
 delayProfile, noisePower, cfo, numTxPkt, idleTime);

Packet Recovery

The signal to process is stored in the variable rx. The processing steps to recover a packet are:

• The packet is detected and synchronized.
• The format of the packet is detected.
• The L-SIG field is extracted and its information bits are recovered to determine the length of the

packet in microseconds.
• The VHT-SIG-A field is extracted and its information bits are recovered.
• The packet format parameters are retrieved from the decoded L-SIG and VHT-SIG-A bits.
• The VHT-LTF field is extracted to perform MIMO channel estimation for decoding the VHT-SIG-B

and VHT Data fields.
• The VHT-SIG-B field is extracted and its information bits recovered.
• The VHT-Data field is extracted and the PSDU and VHT-SIG-B CRC bits recovered using the

retrieved packet parameters.

The start and end indices for some preamble fields depend on the channel bandwidth, but are
independent of all other transmission parameters. These indices are calculated using a default
transmission configuration object with the known bandwidth.

cfgVHTRx = wlanVHTConfig('ChannelBandwidth', cfgVHTTx.ChannelBandwidth);
idxLSTF = wlanFieldIndices(cfgVHTRx, 'L-STF');
idxLLTF = wlanFieldIndices(cfgVHTRx, 'L-LTF');
idxLSIG = wlanFieldIndices(cfgVHTRx, 'L-SIG');
idxSIGA = wlanFieldIndices(cfgVHTRx, 'VHT-SIG-A');

The following code configures objects and variables for processing.

chanBW = cfgVHTTx.ChannelBandwidth;
sr = wlanSampleRate(cfgVHTTx);

% Setup plots for example
[spectrumAnalyzer, timeScope, constellationDiagram] = vhtSigRecSetupPlots(sr);

 Recovery Procedure for an 802.11ac Packet

4-31

% Minimum packet length is 10 OFDM symbols
lstfLen = double(idxLSTF(2)); % Number of samples in L-STF
minPktLen = lstfLen*5;

rxWaveLen = size(rx, 1);

Front-End Processing

The front-end processing consists of packet detection, coarse carrier frequency offset correction,
timing synchronization and fine carrier frequency offset correction. A while loop is used to detect
and synchronize a packet within the received waveform. The sample offset searchOffset is used to
index elements within the array rx to detect a packet. The first packet within rx is detected and
processed. If the synchronization fails for the detected packet, the sample index offset
searchOffset is incremented to move beyond the processed packet in rx. This is repeated until a
packet has been successfully detected and synchronized.

searchOffset = 0; % Offset from start of waveform in samples
while (searchOffset + minPktLen) <= rxWaveLen
 % Packet detection
 pktOffset = wlanPacketDetect(rx, chanBW, searchOffset);

 % Adjust packet offset
 pktOffset = searchOffset + pktOffset;
 if isempty(pktOffset) || (pktOffset + idxLSIG(2) > rxWaveLen)
 error('** No packet detected **');
 end

 % Coarse frequency offset estimation using L-STF
 LSTF = rx(pktOffset + (idxLSTF(1):idxLSTF(2)), :);
 coarseFreqOffset = wlanCoarseCFOEstimate(LSTF, chanBW);

 % Coarse frequency offset compensation
 rx = frequencyOffset(rx,sr,-coarseFreqOffset);

 % Symbol timing synchronization
 LLTFSearchBuffer = rx(pktOffset+(idxLSTF(1):idxLSIG(2)),:);
 pktOffset = pktOffset+wlanSymbolTimingEstimate(LLTFSearchBuffer,chanBW);
 if (pktOffset + minPktLen) > rxWaveLen
 fprintf('** Not enough samples to recover packet **\n\n');
 break;
 end

 % Timing synchronization complete: packet detected
 fprintf('Packet detected at index %d\n\n', pktOffset + 1);

 % Fine frequency offset estimation using L-LTF
 LLTF = rx(pktOffset + (idxLLTF(1):idxLLTF(2)), :);
 fineFreqOffset = wlanFineCFOEstimate(LLTF, chanBW);

 % Fine frequency offset compensation
 rx = frequencyOffset(rx, sr, -fineFreqOffset);

 % Display estimated carrier frequency offset
 cfoCorrection = coarseFreqOffset + fineFreqOffset; % Total CFO
 fprintf('Estimated CFO: %5.1f Hz\n\n', cfoCorrection);

4 Signal Reception

4-32

 break; % Front-end processing complete, stop searching for a packet
end

Packet detected at index 1600

Estimated CFO: 61954.3 Hz

Format Detection

The format of the packet is detected using the three OFDM symbols immediately following the L-LTF.
An estimate of the channel and noise power obtained from the L-LTF is required.

% Channel estimation using L-LTF
LLTF = rx(pktOffset + (idxLLTF(1):idxLLTF(2)), :);
demodLLTF = wlanLLTFDemodulate(LLTF, chanBW);
chanEstLLTF = wlanLLTFChannelEstimate(demodLLTF, chanBW);

% Estimate noise power in non-HT fields
noiseVarNonHT = wlanLLTFNoiseEstimate(demodLLTF);

% Detect the format of the packet
fmt = wlanFormatDetect(rx(pktOffset + (idxLSIG(1):idxSIGA(2)), :), ...
 chanEstLLTF, noiseVarNonHT, chanBW);
disp([fmt ' format detected']);
if ~strcmp(fmt,'VHT')
 error('** A format other than VHT has been detected **');
end

VHT format detected

L-SIG Decoding

In a VHT transmission the L-SIG field is used to determine the receive time, or RXTIME, of the
packet. RXTIME is calculated using the field bits of the L-SIG payload [1 Eq. 22-105]. The number of
samples which contain the packet within rx can then be calculated. The L-SIG payload is decoded
using an estimate of the channel and noise power obtained from the L-LTF.

% Recover L-SIG field bits
disp('Decoding L-SIG... ');
[rxLSIGBits, failCheck, eqLSIGSym] = wlanLSIGRecover(rx(pktOffset + (idxLSIG(1):idxLSIG(2)), :), ...
 chanEstLLTF, noiseVarNonHT, chanBW);

if failCheck % Skip L-STF length of samples and continue searching
 disp('** L-SIG check fail **');
else
 disp('L-SIG check pass');
end

% Measure EVM of L-SIG symbol
EVM = comm.EVM;
EVM.ReferenceSignalSource = 'Estimated from reference constellation';
EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK');
rmsEVM = EVM(eqLSIGSym);
fprintf('L-SIG EVM: %2.2f%% RMS\n', rmsEVM);

% Calculate the receive time and corresponding number of samples in the

 Recovery Procedure for an 802.11ac Packet

4-33

% packet
lengthBits = rxLSIGBits(6:17);
RXTime = ceil((bit2int(double(lengthBits),12,false) + 3)/3) * 4 + 20; % us
numRxSamples = RXTime * 1e-6 * sr; % Number of samples in receive time

fprintf('RXTIME: %dus\n', RXTime);
fprintf('Number of samples in packet: %d\n\n', numRxSamples);

Decoding L-SIG...
L-SIG check pass
L-SIG EVM: 1.83% RMS
RXTIME: 84us
Number of samples in packet: 6720

The waveform and spectrum of the detected packet within rx are displayed for the calculated
RXTIME and corresponding number of samples.

sampleOffset = max((-lstfLen + pktOffset), 1); % First index to plot
sampleSpan = numRxSamples + 2*lstfLen; % Number of samples to plot
% Plot as much of the packet (and extra samples) as we can
plotIdx = sampleOffset:min(sampleOffset + sampleSpan, rxWaveLen);

% Configure timeScope to display the packet
timeScope.TimeSpan = sampleSpan/sr;
timeScope.TimeDisplayOffset = sampleOffset/sr;
timeScope.YLimits = [0 max(abs(rx(:)))];
timeScope(abs(rx(plotIdx ,:)));

% Display the spectrum of the detected packet
spectrumAnalyzer(rx(pktOffset + (1:numRxSamples), :));

4 Signal Reception

4-34

 Recovery Procedure for an 802.11ac Packet

4-35

VHT-SIG-A Decoding

The VHT-SIG-A field contains the transmission configuration of the packet. The VHT-SIG-A bits are
recovered using the channel and noise power estimates obtained from the L-LTF.

% Recover VHT-SIG-A field bits
disp('Decoding VHT-SIG-A... ');
[rxSIGABits, failCRC, eqSIGASym] = wlanVHTSIGARecover(rx(pktOffset + (idxSIGA(1):idxSIGA(2)), :), ...
 chanEstLLTF, noiseVarNonHT, chanBW);

if failCRC
 disp('** VHT-SIG-A CRC fail **');
else
 disp('VHT-SIG-A CRC pass');
end

% Measure EVM of VHT-SIG-A symbols for BPSK and QBPSK modulation schemes
release(EVM);
EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK');
rmsEVMSym1 = EVM(eqSIGASym(:,1));
release(EVM);
EVM.ReferenceConstellation = wlanReferenceSymbols('QBPSK');
rmsEVMSym2 = EVM(eqSIGASym(:,2));
fprintf('VHT-SIG-A EVM: %2.2f%% RMS\n', mean([rmsEVMSym1 rmsEVMSym2]));

4 Signal Reception

4-36

Decoding VHT-SIG-A...
VHT-SIG-A CRC pass
VHT-SIG-A EVM: 2.06% RMS

The helper function helperVHTConfigRecover returns a VHT format configuration object, cfgVHTRx,
based on recovered VHT-SIG-A and L-SIG bits. Properties that are not required to decode the
waveform are set to default values for a wlanVHTConfig object and therefore may differ from the
value in cfgVHTTx. Examples of such properties include NumTransmitAntennas and
SpatialMapping.

% Create a VHT format configuration object by retrieving packet parameters
% from the decoded L-SIG and VHT-SIG-A bits
cfgVHTRx = helperVHTConfigRecover(rxLSIGBits, rxSIGABits);

% Display the transmission configuration obtained from VHT-SIG-A
vhtSigRecDisplaySIGAInfo(cfgVHTRx);

 Decoded VHT-SIG-A contents:
 ChannelBandwidth: 'CBW80'
 NumSpaceTimeStreams: 2
 STBC: 1
 MCS: 5
 ChannelCoding: {'BCC'}
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275
 Beamforming: 0
 PSDULength: 1167

The information provided by VHT-SIG-A allows the location of subsequent fields within the received
waveform to be calculated.

% Obtain starting and ending indices for VHT-LTF and VHT-Data fields
% using retrieved packet parameters
idxVHTLTF = wlanFieldIndices(cfgVHTRx, 'VHT-LTF');
idxVHTSIGB = wlanFieldIndices(cfgVHTRx, 'VHT-SIG-B');
idxVHTData = wlanFieldIndices(cfgVHTRx, 'VHT-Data');

% Warn if waveform does not contain whole packet
if (pktOffset + double(idxVHTData(2))) > rxWaveLen
 fprintf('** Not enough samples to recover entire packet **\n\n');
end

VHT-SIG-B Decoding

The primary use of VHT-SIG-B is for signaling user information in a multi-user packet. In a single-user
packet the VHT-SIG-B carries the length of the packet which can also be calculated using the L-SIG
and VHT-SIG-A (which is demonstrated in the sections above). Despite not being required to decode a
single-user packet, the VHT-SIG-B is recovered below and the bits interpreted. The VHT-SIG-B
symbols are demodulated using a MIMO channel estimate obtained from the VHT-LTF. Note the CRC
for VHT-SIG-B is carried in the VHT Data field.

% Estimate MIMO channel using VHT-LTF and retrieved packet parameters
demodVHTLTF = wlanVHTLTFDemodulate(rx(pktOffset + (idxVHTLTF(1):idxVHTLTF(2)), :), cfgVHTRx);
[chanEstVHTLTF, chanEstSSPilots] = wlanVHTLTFChannelEstimate(demodVHTLTF, cfgVHTRx);

% The L-LTF OFDM demodulator normalizes the output by the number of

 Recovery Procedure for an 802.11ac Packet

4-37

% subcarriers. The VHT-SIG-B OFDM demodulator normalizes the output by the
% number of subcarriers and space-time streams. Therefore, estimate the
% noise power in VHT-SIG-B by scaling the L-LTF noise estimate by the ratio
% of the number of subcarriers in both fields, and the number of space-time
% streams.

numSTSTotal = sum(cfgVHTRx.NumSpaceTimeStreams, 1);
scalingFactor = (height(demodVHTLTF)/size(demodLLTF, 1))*numSTSTotal;
noiseVarVHT = noiseVarNonHT*scalingFactor;

% VHT-SIG-B Recover
disp('Decoding VHT-SIG-B...');
[rxSIGBBits, eqSIGBSym] = wlanVHTSIGBRecover(rx(pktOffset + (idxVHTSIGB(1):idxVHTSIGB(2)),:), ...
 chanEstVHTLTF, noiseVarVHT, chanBW);

% Measure EVM of VHT-SIG-B symbol
release(EVM);
EVM.ReferenceConstellation = wlanReferenceSymbols('BPSK');
rmsEVM = EVM(eqSIGBSym);
fprintf('VHT-SIG-B EVM: %2.2f%% RMS\n', rmsEVM);

% Interpret VHT-SIG-B bits to recover the APEP length (rounded up to a
% multiple of four bytes) and generate reference CRC bits
[refSIGBCRC, sigbAPEPLength] = helperInterpretSIGB(rxSIGBBits, chanBW, true);
disp('Decoded VHT-SIG-B contents: ');
fprintf(' APEP Length (rounded up to 4 byte multiple): %d bytes\n\n', sigbAPEPLength);

Decoding VHT-SIG-B...
VHT-SIG-B EVM: 5.21% RMS
Decoded VHT-SIG-B contents:
 APEP Length (rounded up to 4 byte multiple): 1052 bytes

VHT Data Decoding

The reconstructed VHT configuration object can then be used to recover the VHT Data field. This
includes the VHT-SIG-B CRC bits and PSDU.

The recovered VHT data symbols can then be analyzed as required. In this example the equalized
constellation of the recovered VHT data symbols per spatial stream are displayed.

% Extract VHT Data samples from the waveform
vhtdata = rx(pktOffset + (idxVHTData(1):idxVHTData(2)), :);

% Estimate the noise power in VHT data field
noiseVarVHT = vhtNoiseEstimate(vhtdata, chanEstSSPilots, cfgVHTRx);

% Recover PSDU bits using retrieved packet parameters and channel
% estimates from VHT-LTF
disp('Decoding VHT Data field...');
[rxPSDU, rxSIGBCRC, eqDataSym] = wlanVHTDataRecover(vhtdata, chanEstVHTLTF, noiseVarVHT, cfgVHTRx, ...
 'LDPCDecodingMethod', 'norm-min-sum');

% Plot equalized constellation for each spatial stream
refConst = wlanReferenceSymbols(cfgVHTRx);
[Nsd, Nsym, Nss] = size(eqDataSym);
eqDataSymPerSS = reshape(eqDataSym, Nsd*Nsym, Nss);
for iss = 1:Nss

4 Signal Reception

4-38

 constellationDiagram{iss}.ReferenceConstellation = refConst;
 constellationDiagram{iss}(eqDataSymPerSS(:, iss));
end

% Measure EVM of VHT-Data symbols
release(EVM);
EVM.ReferenceConstellation = refConst;
rmsEVM = EVM(eqDataSym(:));
fprintf('VHT-Data EVM: %2.2f%% RMS\n', rmsEVM);

Decoding VHT Data field...
VHT-Data EVM: 4.68% RMS

 Recovery Procedure for an 802.11ac Packet

4-39

The CRC bits for VHT-SIG-B recovered in VHT Data are then compared to the locally generated
reference to determine whether the VHT-SIG-B and VHT data service bits have been recovered
successfully.

% Test VHT-SIG-B CRC from service bits within VHT Data against
% reference calculated with VHT-SIG-B bits
if ~isequal(refSIGBCRC, rxSIGBCRC)
 disp('** VHT-SIG-B CRC fail **');
else
 disp('VHT-SIG-B CRC pass');
end

VHT-SIG-B CRC pass

The FCS in the MAC frames can be validated using wlanMPDUDecode. As a VHT format frame is
recovered, the PSDU contains an A-MPDU. The MPDUs are extracted from the A-MPDU using
wlanAMPDUDeaggregate.

mpduList = wlanAMPDUDeaggregate(rxPSDU, cfgVHTRx);
fprintf('Number of MPDUs present in the A-MPDU: %d\n', numel(mpduList));

Number of MPDUs present in the A-MPDU: 1

The mpduList contains the de-aggregated list of MPDUs. Each MPDU in the list is passed to
wlanMPDUDecode which validates the FCS and decodes the MPDU.

for i = 1:numel(mpduList)
 [macCfg, payload, decodeStatus] = wlanMPDUDecode(mpduList{i}, cfgVHTRx, ...
 'DataFormat', 'octets');
 if strcmp(decodeStatus, 'FCSFailed')
 fprintf('** FCS failed for MPDU-%d **\n', i);
 else
 fprintf('FCS passed for MPDU-%d\n', i);
 end
end

FCS passed for MPDU-1

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

4 Signal Reception

4-40

Joint Sampling Clock and Carrier Frequency Offset Tracking

This example demonstrates joint sampling clock and carrier frequency offset tracking in a WLAN
receiver.

Introduction

A WLAN radio typically uses a single oscillator to derive clocks for sampling and modulation. The
oscillators in the transmitter and receiver radios do not run at the exact same frequency. Due to this
mismatch, carrier frequency offset (CFO) exists between the receiver and transmitter and the
sampling instants at the receiver shift relative to the transmitter. This shift of sampling instants
between receiver and transmitter is described as sampling clock offset (SCO). When the sampling
clock at the receiver is running slower than the transmitter, this results in a larger sampling period
and a positive sampling clock offset. The inclusion of pilot subcarriers in the IEEE® 802.11™
standard allows for tracking and correction of SCO and CFO impairments.

In OFDM systems SCO manifests itself as a subcarrier- and symbol-dependent phase rotation and
inter-carrier interference (ICI) [1 on page 4-49]. When the SCO is large, and a packet is long,
subcarriers far away from DC will experience a substantial impairment. CFO manifests itself as ICI
and a symbol-dependent phase rotation common to all subcarriers. This figure illustrates the phase
rotation on subcarriers from one OFDM symbol to the next due to these impairments. Φk is the phase
error for subcarrier index k, K is the number of subcarriers, ζ is the SCO, Δf is the carrier frequency
offset, Tu is the period of the symbol, δ is the phase error gradient (PEG), and ω is the common phase
error (CPE). The PEG and CPE can be used to estimate SCO and residual CFO.

This example shows how to demonstrate an IEEE 802.11ac™ VHT waveform with fixed SCO and CFO
impairments [2 on page 4-49], and shows the equalized constellation of the demodulated impaired
waveform with and without joint timing and phase tracking to correct for SCO and CFO to
demonstrate the effectiveness of tracking.

Generate a Baseband Waveform

Create a VHT configuration object to parameterize the transmission. Use a data payload with only
500 bytes and 16-point quadrature amplitude modulation (16-QAM) to produce a small number of
OFDM symbols and make the impairment easy to visualize.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW20';
cfgVHT.NumTransmitAntennas = 1;

 Joint Sampling Clock and Carrier Frequency Offset Tracking

4-41

cfgVHT.NumSpaceTimeStreams = 1;
cfgVHT.MCS = 4; % 16-QAM and 3/4 coding rate
cfgVHT.APEPLength = 500; % Bytes

Create a random PSDU.

s = rng(10); % Seed the random number generator
psdu = randi([0 1],cfgVHT.PSDULength*8,1,'int8');

Generate a VHT packet.

tx = wlanWaveformGenerator(psdu,cfgVHT);

Model Impairments

Model -100 parts per million (PPM) sampling clock offset between the transmitter and receiver using
comm.SampleRateOffset.

sco = -100; % Sampling clock offset in PPM

Use comm.SampleRateOffset by specifying the desired sample rate offset. Sample rate offset is the
relative offset between the sample rate of transmitter and receiver. Sampling clock offset is the
relative offset between the sampling period of transmitter and receiver.

sro = -sco/(1+sco/1e6); % Sample rate offset in PPM

Model sampling clock offset, appending zeros to the waveform to allow for filter delay.

samplingClockoffset = comm.SampleRateOffset(sro);
rx = samplingClockoffset([tx; zeros(100,cfgVHT.NumTransmitAntennas)]);

Add residual carrier frequency offset to the waveform. This example assumes the same oscillator is
used for sampling and modulation, so that the CFO depends on the SCO and carrier frequency.

fc = 5.25e9; % Carrier frequency, Hertz
cfo = (sco*1e-6)*fc; % Carrier frequency offset, Hertz
fs = wlanSampleRate(cfgVHT); % Baseband sample rate
rx = frequencyOffset(rx,fs,cfo); % Add frequency offset

Add noise to the waveform with 30 dBW variance.

awgnChannel = comm.AWGNChannel('NoiseMethod','Variance','Variance',10^(-30/10));
rx = awgnChannel(rx);

Front-End Synchronization and Receiver Processing

To synchronize the packet, in preparation for recovering the data field, the example performs these
processing steps.

1 Detect the packet
2 Perform coarse carrier frequency offset estimation and correction
3 Establish symbol timing synchronization
4 Perform fine carrier frequency offset estimation and correction
5 Demodulate the L-LTF and estimate the noise power
6 Demodulate the VHT-LTF and estimate the channel response

Generate field indices and perform packet detection.

4 Signal Reception

4-42

ind = wlanFieldIndices(cfgVHT);
tOff = wlanPacketDetect(rx,cfgVHT.ChannelBandwidth);

Perform coarse frequency offset correction.

lstf = rx(tOff+(ind.LSTF(1):ind.LSTF(2)),:);
coarseCFOEst = wlanCoarseCFOEstimate(lstf,cfgVHT.ChannelBandwidth);
rx = frequencyOffset(rx,fs,-coarseCFOEst);

Perform symbol timing synchronization.

nonhtPreamble = rx(tOff+(ind.LSTF(1):ind.LSIG(2)),:);
symOff = wlanSymbolTimingEstimate(nonhtPreamble,cfgVHT.ChannelBandwidth);
tOff = tOff+symOff;

Perform fine frequency offset correction.

lltf = rx(tOff+(ind.LLTF(1):ind.LLTF(2)),:);
fineCFOEst = wlanFineCFOEstimate(lltf,cfgVHT.ChannelBandwidth);
rx = frequencyOffset(rx,fs,-fineCFOEst);

Perform channel estimation.

vhtltf = rx(tOff+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,cfgVHT);
[chanEst,chanEstSSPilots] = wlanVHTLTFChannelEstimate(vhtltfDemod,cfgVHT);

Recovery Without Sampling Clock Offset or Residual CFO Tracking

The coarse and fine frequency offset estimation and correction removes the majority of CFO, but
residual CFO remains due to the presence of impairments in the waveform. The receiver must track
and correct this offset.

disp('Front-end impairment correction:');

Front-end impairment correction:

frontEndCFOEst = coarseCFOEst+fineCFOEst;
disp([' Estimated CFO: ' num2str(frontEndCFOEst,'%.1f') ' Hz']);

 Estimated CFO: -525209.0 Hz

residualCFO = cfo-frontEndCFOEst;
disp([' Residual CFO after initial correction: ' num2str(residualCFO,'%.1f') ' Hz']);

 Residual CFO after initial correction: 209.0 Hz

Use the trackingVHTDataRecover function to recover the VHT data field with optional pilot tracking
to correct for timing and phase errors due to SCO and CFO. Control pilot tracking using the
trackingRecoveryConfig object.

First, recover the data field is without pilot tracking. Extract the data field from the waveform using
the start and end sample indices of the field at the baseband rate. If the receiver sampling rate is
higher than the transmitter rate, the receiver requires more samples than the transmitter produces.
To allow for this, extract Ne additional samples from the waveform and pass to the recovery function.
The maximum number of additional samples required depends on the expected SCO, baseband
sampling rate, and maximum packet duration.

Create a recovery configuration with pilot tracking disabled.

 Joint Sampling Clock and Carrier Frequency Offset Tracking

4-43

cfgRec = trackingRecoveryConfig;
cfgRec.PilotTracking = 'None';

Extract data field with Ne additional samples to allow for negative SCO.

maxDuration = 5.484e-3; % Maximum packet duration in seconds
maxSCO = 120; % PPM
Ne = ceil(fs*maxDuration*maxSCO*1e-6); % Number of extra samples
dataInd = tOff+(ind.VHTData(1):ind.VHTData(2)+Ne);
dataInd = dataInd(dataInd<=length(rx)); % Only use indices within waveform
data = rx(dataInd,:);

Perform demodulation and decoding.

[rxPSDUNoTrack,~,eqSymNoTrack] = trackingVHTDataRecover(data,chanEst,chanEstSSPilots,cfgVHT,cfgRec);

Plot the equalized constellation. This plot shows a rotation of all constellation points caused by
residual CFO, and a spreading of constellation points due to SCO. Despite the modest AWGN added to
the waveform, the impairments cause bit errors within the decoded PSDU.

ConstNoTrack = comm.ConstellationDiagram;
ConstNoTrack.Title = 'Equalized symbols with no pilot tracking';
ConstNoTrack.ReferenceConstellation = wlanReferenceSymbols(cfgVHT);
ConstNoTrack(eqSymNoTrack(:));
release(ConstNoTrack)

4 Signal Reception

4-44

[~,berNoTrack] = biterr(rxPSDUNoTrack,psdu);
disp('Bit error rate:');

Bit error rate:

disp([' Without tracking: ' num2str(berNoTrack)]);

 Without tracking: 0.066964

Recovery With Sampling Clock Offset Tracking and Residual CFO Tracking

Now recover the data field with joint timing and phase pilot tracking to correct for SCO and residual
CFO.

 Joint Sampling Clock and Carrier Frequency Offset Tracking

4-45

The tracking algorithm in this example estimates absolute values of δ and ω per OFDM symbol and
applies a per subcarrier and symbol phase correction to the demodulated symbols to reverse the
phase errors caused by SCO and CFO. The algorithm calculates the phase error between each
received pilot subcarrier and the expected value per symbol averaged over PilotTrackingWindow
OFDM symbols. From this value, the algorithm calculates least-square estimates of δ and ω per
symbol, and uses these estimates to apply a phase correction to each symbol and subcarrier [3 on
page 4-49,4 on page 4-49] .

Create a recovery configuration with pilot tracking enabled.

cfgRec = trackingRecoveryConfig;
cfgRec.PilotTracking = 'Joint'; % Joint timing and phase tracking
cfgRec.PilotTrackingWindow = 9; % Averaging window in OFDM symbols

Perform demodulation and decoding.

[rxPSDU,~,eqSymTrack,cpe,peg] = trackingVHTDataRecover(data,chanEst,chanEstSSPilots,cfgVHT,cfgRec);

Plot the equalized constellation. This shows a clear 16-QAM constellation with no spreading or
rotation. The decoded PSDU contains no bit errors.

ConstTrack = comm.ConstellationDiagram;
ConstTrack.Title = 'Equalized symbols with joint pilot tracking';
ConstTrack.ReferenceConstellation = wlanReferenceSymbols(cfgVHT);
ConstTrack(eqSymTrack(:));
release(ConstTrack)

4 Signal Reception

4-46

[~,berTrack] = biterr(rxPSDU,psdu);
disp([' With tracking: ' num2str(berTrack)]);

 With tracking: 0

The trackingVHTDataRecover function returns measurements from which the residual CFO, and SCO
can be estimated:

• cpe - The common phase error (radians) per symbol
• peg - The phase error gradient (radians per subcarrier) per symbol

Estimate the SCO and residual CFO from these measurements using a linear least-square fit of the
rate of change. The trackingPlotSCOCFOEstimates function performs these measurements and plot
the results.

 Joint Sampling Clock and Carrier Frequency Offset Tracking

4-47

[residualCFOEst,scoEst] = trackingPlotSCOCFOEstimates(cpe,peg,cfgVHT);

fprintf('Tracked impairments:\n');

Tracked impairments:

fprintf(' Estimated residual CFO: %3.1f Hz (%.1f Hz error)\n', ...
 residualCFOEst,residualCFOEst-residualCFO);

 Estimated residual CFO: 198.9 Hz (-10.1 Hz error)

fprintf(' Estimated SCO: %3.1f PPM (%.1f PPM error)\n',scoEst,scoEst-sco);

 Estimated SCO: -98.3 PPM (1.7 PPM error)

cfoEst = frontEndCFOEst+residualCFOEst; % Initial + tracked CFO estimate
fprintf('Estimated CFO (initial + tracked): %.1f Hz (%.1f Hz error)\n',cfoEst,cfoEst-cfo);

Estimated CFO (initial + tracked): -525010.1 Hz (-10.1 Hz error)

rng(s); % Restore the state of the random number generator

Conclusion

This example shows how you can track and correct sampling clock and carrier frequency offsets when
recovering the data field of a WLAN waveform.

This example uses data field recovery functions with joint pilot tracking for VHT, HT-MF and non-HT
formats, and an object to configure the recovery algorithms.

4 Signal Reception

4-48

• trackingVHTDataRecover.m
• trackingHTDataRecover.m
• trackingNonHTDataRecover.m
• trackingRecoveryConfig.m

To see an example of pilot tracking for HE format packets see the “Recovery Procedure for an
802.11ax Packet” on page 4-13 example.

References

1 Speth, M., S.A. Fechtel, G. Fock, and H. Meyr. “Optimum Receiver Design for Wireless Broad-
Band Systems Using OFDM. I.” IEEE Transactions on Communications 47, no. 11 (November
1999): 1668–77. https://doi.org/10.1109/26.803501.

2 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

3 Chiueh, Tzi-Dar, Pei-Yun Tsai, Lai. I-Wei, and Tzi-Dar Chiueh. Baseband Receiver Design for
Wireless MIMO-OFDM Communications. 2nd ed. Hoboken, N.J: J. Wiley & Sons, 2012.

4 Horlin, François, and André Bourdoux. Digital Compensation for Analog Front-Ends: A New
Approach to Wireless Transceiver Design. Chichester, West Sussex ; Hoboken, NJ: J. Wiley &
Sons, 2008.

 Joint Sampling Clock and Carrier Frequency Offset Tracking

4-49

Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading
Channel

Transmit a VHT waveform through a noisy MIMO channel. Extract the L-SIG, VHT-SIG-A, and VHT-
SIG-B fields and verify that they were correctly recovered.

Set the parameters used throughout the example.

cbw = 'CBW40'; % Channel bandwidth
fs = 40e6; % Sample rate (Hz)
ntx = 2; % Number of transmit antennas
nsts = 2; % Number of space-time streams
nrx = 3; % Number of receive antennas

Create a VHT configuration object that supports a 2x2 MIMO transmission and has an APEP length of
2000.

vht = wlanVHTConfig('ChannelBandwidth',cbw,'APEPLength',2000, ...
 'NumTransmitAntennas',ntx,'NumSpaceTimeStreams',nsts, ...
 'SpatialMapping','Direct','STBC',false);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],vht.PSDULength*8,1);
txPPDU = wlanWaveformGenerator(txPSDU,vht);

Create a 2x2 TGac channel and an AWGN channel with an SNR=10 dB.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-C');

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',10);

Pass the VHT waveforms through a 2x2 TGac channel and add the AWGN channel noise.

rxPPDU = chNoise(tgacChan(txPPDU));

Add additional white noise corresponding to a receiver with a 9 dB noise figure. The noise variance is
equal to k*T*B*F, where k is Boltzmann's constant, T is the ambient temperature, B is the channel
bandwidth (sample rate), and F is the receiver noise figure.

nVar = 10^((-228.6+10*log10(290) + 10*log10(fs) + 9)/10);
rxNoise = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

rxPPDU = rxNoise(rxPPDU);

Find the start and stop indices for all component fields of the PPDU.

ind = wlanFieldIndices(vht)

ind = struct with fields:
 LSTF: [1 320]
 LLTF: [321 640]

4 Signal Reception

4-50

 LSIG: [641 800]
 VHTSIGA: [801 1120]
 VHTSTF: [1121 1280]
 VHTLTF: [1281 1600]
 VHTSIGB: [1601 1760]
 VHTData: [1761 25600]

The preamble is contained in the first 1760 symbols. Plot the preamble.

plot(abs(rxPPDU(1:1760)))

Extract the L-LTF from the received PPDU using the start and stop indices determined by the
wlanFieldIndices function. Demodulate the L-LTF and estimate the channel coefficients.

rxLLTF = rxPPDU(ind.LLTF(1):ind.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,vht);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,vht);

Extract the L-SIG field from the received PPDU and recover its information bits.

rxLSIG = rxPPDU(ind.LSIG(1):ind.LSIG(2),:);
infoLSIG = wlanLSIGRecover(rxLSIG,chEstLLTF,nVar,cbw);

Inspect the L-SIG rate information and confirm that the sequence [1 1 0 1] is received. This
sequence corresponds to a 6 MHz data rate, which is used for all VHT transmissions.

rate = infoLSIG(1:4)'

 Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel

4-51

rate = 1x4 int8 row vector

 0 1 1 1

Extract the VHT-SIG-A and confirm that the CRC check passed.

rxVHTSIGA = rxPPDU(ind.VHTSIGA(1):ind.VHTSIGA(2),:);
[infoVHTSIGA,failCRC] = wlanVHTSIGARecover(rxVHTSIGA, ...
 chEstLLTF,nVar,cbw);
failCRC

failCRC = logical
 1

Extract and demodulate the VHT-LTF. Use the demodulated signal to estimate the channel coefficients
needed to recover the VHT-SIG-B field.

rxVHTLTF = rxPPDU(ind.VHTLTF(1):ind.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Extract and recover the VHT-SIG-B.

rxVHTSIGB = rxPPDU(ind.VHTSIGB(1):ind.VHTSIGB(2),:);
infoVHTSIGB = wlanVHTSIGBRecover(rxVHTSIGB,chEstVHTLTF,nVar,cbw);

Verify that the APEP length, contained in the first 19 bits of the VHT-SIG-B, corresponds to the
specified length of 2000 bits.

pktLbits = infoVHTSIGB(1:19);
pktLen = bit2int(double(pktLbits),19,false)*4

pktLen = 1676920

4 Signal Reception

4-52

End-to-End VHT Simulation with Frequency Correction

This example shows how to generate, transmit, recover and view a VHT MIMO waveform.

Steps in the example:

• Transmit a VHT waveform through a MIMO channel with AWGN
• Perform a two-stage process to estimate and correct for a frequency offset
• Estimate the channel response
• Recover the VHT data field
• Compare the transmitted and received PSDUs to determine if bit errors occurred

Set the parameters used throughout the example.

cbw = 'CBW160'; % Channel bandwidth
fs = 160e6; % Sample rate (Hz)
ntx = 2; % Number of transmit antennas
nsts = 2; % Number of space-time streams
nrx = 2; % Number of receive antennas

Create a VHT configuration object that supports a 2x2 MIMO transmission and has an APEP length of
2000.

vht = wlanVHTConfig('ChannelBandwidth',cbw,'APEPLength',2000, ...
 'NumTransmitAntennas',ntx,'NumSpaceTimeStreams',nsts, ...
 'SpatialMapping','Direct','STBC',false);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],vht.PSDULength*8,1);
txPPDU = wlanWaveformGenerator(txPSDU,vht);

Create a 2x2 TGac channel and an AWGN channel.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-C');
awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Create a phase/frequency offset object.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. Pass the transmitted waveform
through the noisy TGac channel.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxPPDU = awgnChan(tgacChan(txPPDU), nVar);

Introduce a frequency offset of 500 Hz.

rxPPDUcfo = pfOffset(rxPPDU,500);

 End-to-End VHT Simulation with Frequency Correction

4-53

Find the start and stop indices for all component fields of the PPDU.

ind = wlanFieldIndices(vht);

Extract the L-STF. Estimate and correct for the carrier frequency offset.

rxLSTF = rxPPDUcfo(ind.LSTF(1):ind.LSTF(2),:);

foffset1 = wlanCoarseCFOEstimate(rxLSTF,cbw);
rxPPDUcorr = pfOffset(rxPPDUcfo,-foffset1);

Extract the L-LTF from the corrected signal. Estimate and correct for the residual frequency offset.

rxLLTF = rxPPDUcorr(ind.LLTF(1):ind.LLTF(2),:);

foffset2 = wlanFineCFOEstimate(rxLLTF,cbw);
rxPPDU2 = pfOffset(rxPPDUcorr,-foffset2);

Extract and demodulate the VHT-LTF. Estimate the channel coefficients.

rxVHTLTF = rxPPDU2(ind.VHTLTF(1):ind.VHTLTF(2),:);
dLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEst = wlanVHTLTFChannelEstimate(dLTF,vht);

Extract the VHT data field from the received and frequency-corrected PPDU. Recover the data field.

rxVHTData = rxPPDU2(ind.VHTData(1):ind.VHTData(2),:);
rxPSDU = wlanVHTDataRecover(rxVHTData,chEst,nVar,vht);

Calculate the number of bit errors in the received packet.

numErr = biterr(txPSDU,rxPSDU)

numErr = 0

4 Signal Reception

4-54

Propagation Channel Models

5

802.11ad Packet Error Rate Single Carrier PHY Simulation with
TGay Channel

This example shows how to measure the packet error rate of an IEEE® 802.11ad™ DMG single
carrier (SC) PHY link using an end-to-end simulation.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11ad
SC [1] link with a TGay millimeter-wave channel [2] at a selection of SNR points. At each SNR
point multiple packets are transmitted through the fading channel, synchronized, demodulated and
the PSDUs recovered. Carrier frequency offset and a time delay are also modeled. The PSDUs are
compared to those transmitted to determine the number of packet errors and hence the packet error
rate. The processing for each packet is summarized in the following diagram.

This example also demonstrates how a parfor loop can be used instead of the for loop when
simulating each SNR point to speed up a simulation. parfor, as part of the Parallel Computing
Toolbox™, executes processing for each SNR in parallel to reduce the total simulation time.

Waveform Configuration

An 802.11ad DMG SC PHY transmission is simulated in this example. The DMG format configuration
object contains the format specific configuration of the transmission. The object is created using the
wlanDMGConfig function. The properties of the object contain the configuration of the transmitted
packet. In this example the object is configured to generate a single carrier waveform of MCS "9".
The MCS determines the PHY type used and in this example it must be a string within the range 1-12,
or one of {9.1 12.1 12.2 12.3 12.4 12.5 12.6} to simulate the SC PHY.

% Create a format configuration object
cfgDMG = wlanDMGConfig;
mcs = "9"; % MCS specified as a string scalar or string vector
cfgDMG.PSDULength = 4096; % PSDULength in bytes

5 Propagation Channel Models

5-2

Fading Channel Configuration

In this example we simulate a TGay channel model for the open area hotspot scenario, using the
wlanTGayChannel object. Both the transmit and receive arrays are a 4x4 uniform rectangular array
(URA). Ray-tracing is performed from the transmit to the receive array to derive two deterministic
rays: one LOS ray and another NLOS ray with one-order reflection from the ground. Random rays
and intra-cluster rays are subsequently generated according to the quasi-deterministic (Q-D)
modeling approach and parameters in [2]. Beamforming is performed to set the transmit and
receive antenna steering direction along the ray with the maximum power. The fading channel
impulse responses are normalized so no power gain or loss is introduced by the channel. Both the
channel input and output signals are unpolarized.

% Get sampling rate and specify carrier frequency
fs = wlanSampleRate(cfgDMG);
fc = 60e9;

% Create a TGay channel object
tgayChan = wlanTGayChannel;
tgayChan.SampleRate = fs;
tgayChan.CarrierFrequency = fc;
tgayChan.Environment = 'Open area hotspot';
tgayChan.TransmitArray.Size = [4 4];
tgayChan.TransmitArrayPosition = [0; 0; 6]; % Meters
tgayChan.TransmitArrayOrientation = [0; 270; 0]; % Degrees
tgayChan.ReceiveArray.Size = [4 4];
tgayChan.ReceiveArrayPosition = [6; 6; 1.5]; % Meters
tgayChan.ReceiveArrayOrientation = [90; 0; 0]; % Degrees
tgayChan.BeamformingMethod = 'Maximum power ray';
tgayChan.NormalizeImpulseResponses = true;
tgayChan.NormalizeChannelOutputs = false;

Given the channel object configuration, we display a 3D map to show the environment and antenna
array settings. The two deterministic rays from ray-tracing are also shown in the figure.

showEnvironment(tgayChan);

 802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel

5-3

Channel Impairment

The maximum tolerance for the transmitter center frequency must be within [-20, +20] ppm [1]. In
this example, a clock accuracy of 20ppm is considered to derive the CFO. The transmitted signal is
delayed by 500 samples and also appended by 100 zero samples at the end to account for delays from
TGay channel filtering.

ppm = 20; % Clock accuracy to drive the CFO (ppm)
freqOffset = ppm*1e-6*fc; % Carrier frequency offset (Hz)
delay = 500; % Sample to delay the waveform
zeroPadding = 100; % Add trailing zeros to allow for channel delay

Simulation Parameters

For each SNR point (dB) in the cell snrRanges a number of packets are generated, passed through a
channel and demodulated to determine the packet error rate. The SNR points to test are selected
from snrRanges based on the MCS simulated.

snrRanges = {-2.5:0.5:0, ... % MCS 1
 -0.5:0.75:3.5, ... % MCS 2
 1.0:0.75:5, ... % MCS 3
 1.5:0.75:5.5, ... % MCS 4
 2.0:0.75:6.0, ... % MCS 5
 2.5:0.75:6.5, ... % MCS 6
 3:0.75:7, ... % MCS 7
 4.5:0.75:8.5,... % MCS 8
 6:0.5:8.5, ... % MCS 9

5 Propagation Channel Models

5-4

 7.0:0.5:9.5, ... % MCS 9.1
 8.5:1:13.5, ... % MCS 10
 9.5:1.0:14.5, ... % MCS 11
 10.5:1.25:17.0, ... % MCS 12
 11.5:1.5:19.0, ... % MCS 12.1
 13.0:1.0:18, ... % MCS 12.2
 14.0:1.0:19, ... % MCS 12.3
 17.0:1.5:25, ... % MCS 12.4
 19.0:2:29, ... % MCS 12.5
 19.5:2:30}; % MCS 12.6

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing the numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % The maximum number of packets at an SNR point

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated.

For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through a TGay channel model. Different channel realizations are

modeled for different packets.
3 AWGN is added to the received waveform.
4 The frequency offset impairment is added to each packet.
5 The packet is detected.
6 Carrier frequency offset is estimated and corrected.
7 Fine timing synchronization is established. The CE field samples are provided for fine timing to

allow for packet detection at the start of the STF.
8 The STF and CE fields are extracted from the synchronized received waveform. The noise and

channel estimation is performed on the recovered fields respectively.
9 The data field, excluding the first guard interval is extracted and reshaped into blocks. The

received symbols in the data field are equalized.
10 The received symbols are tracked and corrected for phase errors caused by any residual carrier

frequency offset.
11 The data field is decoded to recover the PSDU bits.

A parfor loop can be used to parallelize processing of the SNR points. To enable the use of parallel
computing for increased speed comment out the for statement and uncomment the parfor
statement below.

numSNR = numel(snrRanges{1}); % Number of SNR points
if ~isstring(mcs)

 802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel

5-5

 error('MCS must be specified as a string scalar or string vector');
end
numMCS = numel(mcs); % Number of MCS
packetErrorRate = zeros(numMCS,numSNR);
Ngi = 64; % Fixed GI length defined in the standard (20.6.3.2.5)
validMCS = string(sort([1:12 9.1 12.1:0.1:12.6]));

for imcs = 1:numMCS
 cfgDMG.MCS = mcs(imcs);
 if ~strcmp(phyType(cfgDMG),'SC')
 error('This example only supports DMG SC PHY simulation');
 end
 ind = wlanFieldIndices(cfgDMG);
 snr = snrRanges{mcs(imcs)==validMCS}; % SNR points to simulate from MCS

 % parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
 for isnr = 1:numSNR % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',1);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Set simulation parameters
 numPacketErrors = 0;
 numPkt = 1; % Index of the transmitted packet

 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet waveform
 psdu = randi([0 1],cfgDMG.PSDULength*8,1);
 txWaveform = wlanWaveformGenerator(psdu,cfgDMG);

 % Add delay and trailing zeros
 tx = [zeros(delay,1); txWaveform; zeros(zeroPadding,1)];

 % Transmit through a TGay channel. Reset the channel for a
 % different realization per packet.
 reset(tgayChan);
 chanOut = tgayChan(tx);

 % Add noise
 rx = awgn(chanOut,snr(isnr));

 % Add CFO
 rx = frequencyOffset(rx,fs,freqOffset);

 % Packet detection
 threshold = 0.03; % Good for low SNRs
 pktStartOffset = dmgPacketDetect(rx,0,threshold);
 if isempty(pktStartOffset) % If empty no STF detected; packet error
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Frequency offset estimation and correction
 stf = rx(pktStartOffset+(ind.DMGSTF(1):ind.DMGSTF(2)));
 fOffsetEst = dmgCFOEstimate(stf);

5 Propagation Channel Models

5-6

 rx = frequencyOffset(rx,fs,-fOffsetEst);

 % Symbol timing and channel estimate
 preamblefield = rx(pktStartOffset+1:pktStartOffset+ind.DMGHeader(2),:);
 [symbolTimingOffset,chanEst] = dmgTimingAndChannelEstimate(preamblefield);
 startOffset = pktStartOffset+symbolTimingOffset;

 % If not enough samples to decode detected data field start,
 % then assume synchronization error and packet error
 if (startOffset+ind.DMGData(2))>size(rx,1)
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Noise estimation using the STF as repeating sequence
 stf = rx(pktStartOffset+(ind.DMGSTF(1):ind.DMGSTF(2)));
 nVarEst = dmgSTFNoiseEstimate(stf);

 % Extract data field (ignore first GI)
 rxData = rx(startOffset+((ind.DMGData(1)+Ngi):ind.DMGData(2)));

 % Linear frequency domain equalization
 rxEqDataBlks = dmgSingleCarrierFDE(rxData,chanEst,nVarEst);

 % Unique word phase tracking
 rxEqDataBlks = dmgUniqueWordPhaseTracking(rxEqDataBlks);

 % Discard GI from all blocks
 rxDataSym = rxEqDataBlks(1:end-Ngi,:);

 % Recover the transmitted PSDU from DMG Data field
 dataDecode = wlanDMGDataBitRecover(rxDataSym,nVarEst,cfgDMG);

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(psdu,dataDecode));
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(imcs,isnr) = numPacketErrors/(numPkt-1);
 disp(join([" MCS:" cfgDMG.MCS ", SNR " ...
 num2str(snr(isnr)) " completed after " ...
 num2str(numPkt-1) " packets, PER: " ...
 num2str(packetErrorRate(imcs,isnr))],""));
 end
end

 MCS:9, SNR 6 completed after 11 packets, PER: 1
 MCS:9, SNR 6.5 completed after 16 packets, PER: 0.6875
 MCS:9, SNR 7 completed after 38 packets, PER: 0.28947
 MCS:9, SNR 7.5 completed after 99 packets, PER: 0.11111
 MCS:9, SNR 8 completed after 100 packets, PER: 0.04
 MCS:9, SNR 8.5 completed after 100 packets, PER: 0.01

 802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel

5-7

Plot Packet Error Rate vs SNR Results

markers = 'ox*sd^v><ph+ox*sd^v';
color = 'bmcrgbrkymcrgbrkymc';
figure;
for imcs = 1:numMCS
 semilogy(snrRanges{mcs(imcs)==validMCS},packetErrorRate(imcs,:).',['-' markers(imcs) color(imcs)]);
 hold on;
end
grid on;
xlabel('SNR (dB)');
ylabel('PER');
dataStr = arrayfun(@(x)sprintf('MCS %s',x),mcs,'UniformOutput',false);
legend(dataStr);
title('PER for DMG SC-PHY, TGay channel');

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters; maxNumErrors
and maxNumPackets. For meaningful results, it is recommended that these values should be larger
than those presented in this example. Increasing the number of packets simulated allows the PER
under different scenarios to be compared. Try changing the MCS value and compare the packet error
rate. As an example, the figure below was created by running the example for all single carrier MCS
with PSDULength: 8192 bytes, maxNumErrors: 1000 and maxNumPackets: 10000.

5 Propagation Channel Models

5-8

Explore the TGay channel settings by changing the environment ('Street canyon hotspot' or 'Large
hotel lobby'), user configurations, polarization type, array configurations, beamforming method and
so on. In the street canyon scenario, the object calculates deterministic rays up to 1-order reflection
from the ground and walls. In the hotel lobby scenario, the deterministic rays are up to 2-order
reflection from the ground, ceiling and/or walls. Due to the additional reflection of rays, the PER
results are typically better than the above obtained from the open area scenario.

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 A. Maltsev and et. al, Channel Models for IEEE 802.11ay, IEEE 802.11-15/1150r9, Mar. 2017.

 802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel

5-9

802.11ac Packet Error Rate Simulation for 8x8 TGac Channel

This example shows how to measure the packet error rate of an IEEE® 802.11ac™ VHT link using an
end-to-end simulation with a fading TGac channel model and additive white Gaussian noise.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11ac
[1] VHT link with a fading channel at a selection of SNR points. At each SNR point multiple packets
are transmitted through a channel, demodulated and the PSDUs recovered. The PSDUs are compared
to those transmitted to determine the number of packet errors and hence the packet error rate.
Packet detection, timing synchronization, carrier frequency offset correction and phase tracking are
performed by the receiver. The processing for each packet is summarized in the following

This example also demonstrates how a parfor loop can be used instead of the for loop when
simulating each SNR point to speed up a simulation. The parfor function, as part of the Parallel
Computing Toolbox™, executes processing for each SNR in parallel to reduce the total simulation
time.

Waveform Configuration

An 802.11ac VHT transmission is simulated in this example. The VHT format configuration object,
wlanVHTConfig, contains the format-specific configuration of the transmission. The properties of the
object contain the configuration. In this example the object is configured for a 80 MHz channel
bandwidth, 8 transmit antennas, 8 space-time streams, no space time block coding, 256-QAM rate-5/6
(MCS 9), and binary convolutional coding (BCC).

% Create a format configuration object for a 8-by-8 VHT transmission
cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW80'; % 80 MHz channel bandwidth
cfgVHT.NumTransmitAntennas = 8; % 8 transmit antennas
cfgVHT.NumSpaceTimeStreams = 8; % 8 space-time streams
cfgVHT.APEPLength = 3000; % APEP length in bytes
cfgVHT.MCS = 9; % 256-QAM rate-5/6
cfgVHT.ChannelCoding = 'BCC'; % Binary convolutional coding

Channel Configuration

In this example a TGac N-LOS channel model is used with delay profile Model-D. For Model-D when
the distance between transmitter and receiver is greater than or equal to 10 meters, the model is

5 Propagation Channel Models

5-10

NLOS. This is described further in wlanTGacChannel. An 8x8 MIMO channel is simulated in this
example therefore 8 receive antennas are specified.

% Create and configure the channel
tgacChannel = wlanTGacChannel;
tgacChannel.DelayProfile = 'Model-D';
tgacChannel.NumReceiveAntennas = 8;
tgacChannel.TransmitReceiveDistance = 10; % Distance in meters for NLOS
tgacChannel.ChannelBandwidth = cfgVHT.ChannelBandwidth;
tgacChannel.NumTransmitAntennas = cfgVHT.NumTransmitAntennas;
tgacChannel.LargeScaleFadingEffect = 'None';
tgacChannel.NormalizeChannelOutputs = false;

Simulation Parameters

For each SNR point in the vector snr a number of packets are generated, passed through a channel
and demodulated to determine the packet error rate.

snr = 40:5:50;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing the numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % The maximum number of packets at an SNR point

Set the remaining variables for the simulation.

% Get the baseband sampling rate
fs = wlanSampleRate(cfgVHT);

% Get the OFDM info
ofdmInfo = wlanVHTOFDMInfo('VHT-Data',cfgVHT);

% Set the sampling rate of the channel
tgacChannel.SampleRate = fs;

% Indices for accessing each field within the time-domain packet
ind = wlanFieldIndices(cfgVHT);

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated.

For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through a different realization of the TGac channel model.
3 AWGN is added to the received waveform to create the desired average SNR per active

subcarrier after OFDM demodulation.

 802.11ac Packet Error Rate Simulation for 8x8 TGac Channel

5-11

4 The packet is detected.
5 Coarse carrier frequency offset is estimated and corrected.
6 Fine timing synchronization is established. The L-STF, L-LTF and L-SIG samples are provided for

fine timing to allow for packet detection at the start or end of the L-STF.
7 Fine carrier frequency offset is estimated and corrected.
8 The VHT-LTF is extracted from the synchronized received waveform. The VHT-LTF is OFDM

demodulated and channel estimation is performed.
9 The VHT Data field is extracted from the synchronized received waveform. The PSDU is

recovered using the extracted field and the channel estimate.

A parfor loop can be used to parallelize processing of the SNR points. To enable the use of parallel
computing for increased speed comment out the for statement and uncomment the parfor
statement below.

S = numel(snr);
packetErrorRate = zeros(S,1);
%parfor i = 1:S % Use 'parfor' to speed up the simulation
for i = 1:S % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = i;
 RandStream.setGlobalStream(stream);

 % Account for noise energy in nulls so the SNR is defined per
 % active subcarrier
 packetSNR = snr(i)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet waveform
 txPSDU = randi([0 1],cfgVHT.PSDULength*8,1); % PSDULength in bytes
 tx = wlanWaveformGenerator(txPSDU,cfgVHT);

 % Add trailing zeros to allow for channel delay
 tx = [tx; zeros(50,cfgVHT.NumTransmitAntennas)]; %#ok<AGROW>

 % Pass the waveform through the fading channel model
 reset(tgacChannel); % Reset channel for different realization
 rx = tgacChannel(tx);

 % Add noise
 rx = awgn(rx,packetSNR);

 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,cfgVHT.ChannelBandwidth);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction

5 Propagation Channel Models

5-12

 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,cfgVHT.ChannelBandwidth);
 rx = frequencyOffset(rx,fs,-coarseFreqOff);

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,...
 cfgVHT.ChannelBandwidth);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected outwith the range of expected delays from the
 % channel modeling; packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 lltf = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(lltf,cfgVHT.ChannelBandwidth);
 rx = frequencyOffset(rx,fs,-fineFreqOff);

 % Extract VHT-LTF samples from the waveform, demodulate and perform
 % channel estimation
 vhtltf = rx(pktOffset+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
 vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,cfgVHT);

 % Channel estimate
 [chanEst,chanEstSSPilots] = wlanVHTLTFChannelEstimate(vhtltfDemod,cfgVHT);

 % Extract VHT Data samples from the waveform
 vhtdata = rx(pktOffset+(ind.VHTData(1):ind.VHTData(2)),:);

 % Estimate the noise power in VHT data field
 nVarVHT = vhtNoiseEstimate(vhtdata,chanEstSSPilots,cfgVHT);

 % Recover the transmitted PSDU in VHT Data
 rxPSDU = wlanVHTDataRecover(vhtdata,chanEst,nVarVHT,cfgVHT,...
 'LDPCDecodingMethod','norm-min-sum');

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(txPSDU,rxPSDU));
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(i) = numPacketErrors/(numPkt-1);
 disp(['SNR ' num2str(snr(i)) ' completed after ' ...
 num2str(numPkt-1) ' packets, PER: ' ...
 num2str(packetErrorRate(i))]);
end

 802.11ac Packet Error Rate Simulation for 8x8 TGac Channel

5-13

SNR 40 completed after 11 packets, PER: 1
SNR 45 completed after 15 packets, PER: 0.73333
SNR 50 completed after 100 packets, PER: 0.04

Plot Packet Error Rate vs SNR Results

figure
semilogy(snr,packetErrorRate,'-ob');
grid on;
xlabel('SNR (dB)');
ylabel('PER');
title('802.11ac 80MHz, MCS9, BCC, Direct Mapping, 8x8 Channel Model D-NLOS');

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters; maxNumErrors
and maxNumPackets. For meaningful results it is recommend that these values should be larger than
those presented in this example. Increasing the number of packets simulated allows the PER under
different scenarios to be compared. Try changing the transmission and reception configurations and
compare the packet error rate. As an example, the figure below was created by running the example
for maxNumErrors: 1000 and maxNumPackets: 10000.

5 Propagation Channel Models

5-14

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

 802.11ac Packet Error Rate Simulation for 8x8 TGac Channel

5-15

802.11n Packet Error Rate Simulation for 2x2 TGn Channel

This example shows how to measure the packet error rate of an IEEE® 802.11n™ HT link using an
end-to-end simulation with a fading TGn channel model and additive white Gaussian noise.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11n
HT [1] link with a fading channel at a selection of SNR points. At each SNR point multiple packets
are transmitted through a channel, demodulated and the PSDUs recovered. The PSDUs are compared
to those transmitted to determine the number of packet errors and hence the packet error rate.
Packet detection, timing synchronization, carrier frequency offset correction and phase tracking are
performed by the receiver. The processing for each packet is summarized in the following diagram.

This example also demonstrates how a parfor loop can be used instead of a for loop when
simulating each SNR point to speed up a simulation. The parfor function, as part of the Parallel
Computing Toolbox™, executes processing for each SNR in parallel to reduce the total simulation
time.

Waveform Configuration

An 802.11n HT transmission is simulated in this example. The HT format configuration object,
wlanHTConfig, contains the format specific configuration of the transmission. The properties of the
object contain the configuration. In this example the object is configured for a 20 MHz channel
bandwidth, 2 transmit antennas, 2 space time streams and no space time block coding.

% Create a format configuration object for a 2-by-2 HT transmission
cfgHT = wlanHTConfig;
cfgHT.ChannelBandwidth = 'CBW20'; % 20 MHz channel bandwidth
cfgHT.NumTransmitAntennas = 2; % 2 transmit antennas
cfgHT.NumSpaceTimeStreams = 2; % 2 space-time streams
cfgHT.PSDULength = 1000; % PSDU length in bytes
cfgHT.MCS = 15; % 2 spatial streams, 64-QAM rate-5/6
cfgHT.ChannelCoding = 'BCC'; % BCC channel coding

Channel Configuration

In this example a TGn N-LOS channel model is used with delay profile Model-B. For Model-B when
the distance between transmitter and receiver is greater than or equal to five meters, the model is
NLOS. This is described further in wlanTGnChannel.

5 Propagation Channel Models

5-16

% Create and configure the channel
tgnChannel = wlanTGnChannel;
tgnChannel.DelayProfile = 'Model-B';
tgnChannel.NumTransmitAntennas = cfgHT.NumTransmitAntennas;
tgnChannel.NumReceiveAntennas = 2;
tgnChannel.TransmitReceiveDistance = 10; % Distance in meters for NLOS
tgnChannel.LargeScaleFadingEffect = 'None';
tgnChannel.NormalizeChannelOutputs = false;

Simulation Parameters

For each SNR point in the vector snr a number of packets are generated, passed through a channel
and demodulated to determine the packet error rate.

snr = 25:10:45;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumPEs is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing the numbers.

maxNumPEs = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % The maximum number of packets at an SNR point

Set the remaining variables for the simulation.

% Get the baseband sampling rate
fs = wlanSampleRate(cfgHT);

% Get the OFDM info
ofdmInfo = wlanHTOFDMInfo('HT-Data',cfgHT);

% Set the sampling rate of the channel
tgnChannel.SampleRate = fs;

% Indices for accessing each field within the time-domain packet
ind = wlanFieldIndices(cfgHT);

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated.

For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through a different realization of the TGn channel model.
3 AWGN is added to the received waveform to create the desired average SNR per active

subcarrier after OFDM demodulation.
4 The packet is detected.
5 Coarse carrier frequency offset is estimated and corrected.

 802.11n Packet Error Rate Simulation for 2x2 TGn Channel

5-17

6 Fine timing synchronization is established. The L-STF, L-LTF and L-SIG samples are provided for
fine timing to allow for packet detection at the start or end of the L-STF.

7 Fine carrier frequency offset is estimated and corrected.
8 The HT-LTF is extracted from the synchronized received waveform. The HT-LTF is OFDM

demodulated and channel estimation is performed.
9 The HT Data field is extracted from the synchronized received waveform. The PSDU is recovered

using the extracted field and the channel estimate.

A parfor loop can be used to parallelize processing of the SNR points. To enable the use of parallel
computing for increased speed comment out the 'for' statement and uncomment the 'parfor'
statement below.

S = numel(snr);
packetErrorRate = zeros(S,1);
%parfor i = 1:S % Use 'parfor' to speed up the simulation
for i = 1:S % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = i;
 RandStream.setGlobalStream(stream);

 % Account for noise energy in nulls so the SNR is defined per
 % active subcarrier
 packetSNR = snr(i)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 n = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumPEs && n<=maxNumPackets
 % Generate a packet waveform
 txPSDU = randi([0 1],cfgHT.PSDULength*8,1); % PSDULength in bytes
 tx = wlanWaveformGenerator(txPSDU,cfgHT);

 % Add trailing zeros to allow for channel filter delay
 tx = [tx; zeros(15,cfgHT.NumTransmitAntennas)]; %#ok<AGROW>

 % Pass the waveform through the TGn channel model
 reset(tgnChannel); % Reset channel for different realization
 rx = tgnChannel(tx);

 % Add noise
 rx = awgn(rx,packetSNR);

 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,cfgHT.ChannelBandwidth);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;
 n = n+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction
 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,cfgHT.ChannelBandwidth);
 rx = frequencyOffset(rx,fs,-coarseFreqOff);

5 Propagation Channel Models

5-18

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,...
 cfgHT.ChannelBandwidth);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected outwith the range of expected delays from the
 % channel modeling; packet error
 if pktOffset>15
 numPacketErrors = numPacketErrors+1;
 n = n+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 lltf = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(lltf,cfgHT.ChannelBandwidth);
 rx = frequencyOffset(rx,fs,-fineFreqOff);

 % Extract HT-LTF samples from the waveform, demodulate and perform
 % channel estimation
 htltf = rx(pktOffset+(ind.HTLTF(1):ind.HTLTF(2)),:);
 htltfDemod = wlanHTLTFDemodulate(htltf,cfgHT);
 chanEst = wlanHTLTFChannelEstimate(htltfDemod,cfgHT);

 % Extract HT Data samples from the waveform
 htdata = rx(pktOffset+(ind.HTData(1):ind.HTData(2)),:);

 % Estimate the noise power in HT data field
 nVarHT = htNoiseEstimate(htdata,chanEst,cfgHT);

 % Recover the transmitted PSDU in HT Data
 rxPSDU = wlanHTDataRecover(htdata,chanEst,nVarHT,cfgHT,...
 "LDPCDecodingMethod","norm-min-sum");

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(txPSDU,rxPSDU));
 numPacketErrors = numPacketErrors+packetError;
 n = n+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(i) = numPacketErrors/(n-1);
 disp(['SNR ' num2str(snr(i))...
 ' completed after ' num2str(n-1) ' packets,'...
 ' PER: ' num2str(packetErrorRate(i))]);
end

SNR 25 completed after 11 packets, PER: 1
SNR 35 completed after 45 packets, PER: 0.24444
SNR 45 completed after 100 packets, PER: 0.01

 802.11n Packet Error Rate Simulation for 2x2 TGn Channel

5-19

Plot Packet Error Rate vs SNR Results

figure;
semilogy(snr,packetErrorRate,'-ob');
grid on;
xlabel('SNR [dB]');
ylabel('PER');
title('802.11n 20MHz, MCS15, Direct Mapping, 2x2 Channel Model B-NLOS');

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters; maxNumPEs and
maxNumPackets. For meaningful results it is recommended that these values should be larger than
those presented in this example. Increasing the number of packets simulated allows the PER under
different scenarios to be compared. Try changing the transmit encoding scheme to LDPC and
compare the packet error rate. As an example, the figure below was created by running the example
for maxNumPEs: 200 and maxNumPackets: 10000, with four different configurations; 1x1 and 2x2
with BCC and LDPC encoding.

5 Propagation Channel Models

5-20

Appendix

This example uses the following helper functions:

• htNoiseEstimate.m

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

 802.11n Packet Error Rate Simulation for 2x2 TGn Channel

5-21

802.11ah Packet Error Rate Simulation for 2x2 TGah Channel

This example shows how to measure the packet error rate of an IEEE® 802.11ah™ S1G short
preamble link using an end-to-end simulation with a fading TGah indoor channel model and additive
white Gaussian noise.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11ah
[1] S1G short preamble link with a fading channel at a selection of SNR points. For each SNR point
multiple packets are transmitted through a channel, demodulated and the PSDUs recovered. The
PSDUs are compared to those transmitted to determine the number of packet errors and hence the
packet error rate. The processing for each packet is summarized in the following diagram.

This example simulates the S1G-Short format with no impairment correction apart from channel
estimation and equalization. The received signal is synchronized to the start of the packet by
compensating for a known delay and the default OFDM demodulation symbol sampling offset. No
frequency synchronization is performed. For information on how to automatically detect and
synchronize to the received signal, see these examples for 802.11n™ and 802.11ac™.

• “802.11n Packet Error Rate Simulation for 2x2 TGn Channel” on page 5-16
• “802.11ac Packet Error Rate Simulation for 8x8 TGac Channel” on page 5-10

This example also demonstrates how a parfor loop can be used instead of the for loop when
simulating each SNR point to speed up a simulation. parfor as part of the Parallel Computing
Toolbox™, executes processing for each SNR in parallel to reduce the total simulation time.

Waveform Configuration

A single-user 802.11ah S1G short preamble transmission is simulated in this example. An S1G format
configuration object contains the format specific configuration of the transmission. The object is

5 Propagation Channel Models

5-22

created using the wlanS1GConfig function. The properties of the object contain the configuration.
In this example the object is configured for a 2 MHz channel bandwidth, short preamble, 2 transmit
antennas, 2 space-time streams, 256 bytes payload, and 64-QAM rate-5/6 (MCS 7).

% Create S1G configuration object for single user S1G short preamble
% transmission with 2 transmit antennas and 2 space-time streams
cfgS1G = wlanS1GConfig;
cfgS1G.ChannelBandwidth = 'CBW2'; % 2 MHz channel bandwidth
cfgS1G.Preamble = 'Short'; % Short preamble
cfgS1G.NumTransmitAntennas = 2; % 2 transmit antennas
cfgS1G.NumSpaceTimeStreams = 2; % 2 space-time streams
cfgS1G.APEPLength = 256; % APEP length in bytes
cfgS1G.MCS = 7; % 64-QAM rate-5/6

Channel Configuration

In this example a TGah N-LOS indoor channel model is used with delay profile Model-B. For Model-B,
when the distance between transmitter and receiver is greater than or equal to 5 meters, the model is
NLOS. This is described further in wlanTGahChannel. A 2x2 MIMO channel is simulated in this
example therefore 2 receive antennas are specified.

% Create and configure the TGah channel
tgahChannel = wlanTGahChannel;
tgahChannel.DelayProfile = 'Model-B';
tgahChannel.NumTransmitAntennas = cfgS1G.NumTransmitAntennas;
tgahChannel.NumReceiveAntennas = 2;
tgahChannel.TransmitReceiveDistance = 5; % Distance in meters for NLOS
tgahChannel.ChannelBandwidth = cfgS1G.ChannelBandwidth;
tgahChannel.LargeScaleFadingEffect = 'None';
tgahChannel.NormalizeChannelOutputs = false;

Simulation Parameters

For each SNR point in the vector snr a number of packets are generated, passed through a channel
and demodulated to determine the packet error rate.

snr = 25:10:45;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing the numbers.

maxNumErrors = 1e2; % The maximum number of packet errors at an SNR point
maxNumPackets = 1e3; % The maximum number of packets at an SNR point

Set the remaining variables for the simulation.

% Indices for accessing each field within the time-domain packet
fieldInd = wlanFieldIndices(cfgS1G);

% OFDM information

 802.11ah Packet Error Rate Simulation for 2x2 TGah Channel

5-23

ofdmInfo = wlanS1GOFDMInfo('S1G-Data',cfgS1G);

% Set the sampling rate of the channel
tgahChannel.SampleRate = wlanSampleRate(cfgS1G);

if ~strcmp(packetFormat(cfgS1G),'S1G-Short')
 error('This example only supports the S1G-Short packet format');
end

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated. At each SNR
point:

1 Multiple data packets are transmitted through a 2x2 TGah channel with AWGN.
2 Each packet is time synchronized given a known delay.
3 The S1G-LTF1 and S1G-LTF2N fields are demodulated and channel estimation is performed.
4 The S1G-Data field is extracted from the synchronized received waveform and OFDM

demodulated.
5 The data carrying subcarriers are equalized using the channel estimates.
6 The PSDU is recovered using the equalized data subcarriers, noise variance estimate, and

channel state information (CSI).
7 The recovered PSDU of each packet is compared to those transmitted to determine the number

of packet errors and hence the packet error rate.

A parfor loop can be used to parallelize processing of the SNR points. To enable the use of parallel
computing for increased speed comment out the 'for' statement and uncomment the 'parfor'
statement below.

packetErrorRate = zeros(numel(snr),1);
%parfor i = 1:numel(snr) % Use 'parfor' to speed up the simulation
for i = 1:numel(snr) % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = i;
 RandStream.setGlobalStream(stream);

 % Account for noise energy in nulls so the SNR is defined per
 % active subcarrier
 packetSNR = snr(i)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet for 802.11ah short preamble
 txPSDU = randi([0 1],cfgS1G.PSDULength*8,1);
 txWaveform = wlanWaveformGenerator(txPSDU,cfgS1G);

 % Add trailing zeros to allow for channel delay
 tx = [txWaveform; zeros(50,cfgS1G.NumTransmitAntennas)];

 % Pass through fading indoor TGah channel
 reset(tgahChannel); % Reset channel for different realization

5 Propagation Channel Models

5-24

 rx = tgahChannel(tx);

 % Add noise
 rx = awgn(rx,packetSNR);

 % Synchronize
 % The received signal is synchronized to the start of the packet by
 % compensating for a known delay and the default OFDM demodulation
 % symbol sampling offset.
 delay = 4;
 rxSync = rx(delay+1:end,:);

 % LTF demodulation and channel estimation
 % Demodulate S1G-LTF1
 rxLTF1 = rxSync(fieldInd.S1GLTF1(1):fieldInd.S1GLTF1(2),:);
 demodLTF1 = wlanS1GDemodulate(rxLTF1,'S1G-LTF1',cfgS1G);

 % If required, demodulate S1G-LTF2N, and perform channel estimation
 if cfgS1G.NumSpaceTimeStreams>1
 % Use S1G-LTF1 and S1G-LTF2N for channel estimation
 rxLTF2N = rxSync(fieldInd.S1GLTF2N(1):fieldInd.S1GLTF2N(2),:);
 demodLTF2N = wlanS1GDemodulate(rxLTF2N,'S1G-LTF2N',cfgS1G);
 chanEst = s1gLTFChannelEstimate([demodLTF1 demodLTF2N],cfgS1G);
 else
 % Use only S1G-LTF1 for channel estimation
 chanEst = s1gLTFChannelEstimate(demodLTF1,cfgS1G);
 end

 % Noise variance estimate from S1G-LTF1 demodulated symbols
 noiseVarEst = wlanLLTFNoiseEstimate(demodLTF1);

 % Extract S1G-Data field
 rxData = rxSync(fieldInd.S1GData(1):fieldInd.S1GData(2),:);

 % OFDM demodulation
 demodSym = wlanS1GDemodulate(rxData,'S1G-Data',cfgS1G);

 % Extract data subcarriers from demodulated symbols and channel
 % estimate
 demodDataSym = demodSym(ofdmInfo.DataIndices,:,:);
 chanEstData = chanEst(ofdmInfo.DataIndices,:,:);

 % MMSE frequency domain equalization
 [eqDataSym,csi] = ofdmEqualize(demodDataSym,chanEstData,noiseVarEst);

 % Recover PSDU bits
 rxPSDU = s1gDataBitRecover(eqDataSym,noiseVarEst,csi,cfgS1G);

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(txPSDU,rxPSDU));
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Compute PER for this SNR point
 packetErrorRate(i) = numPacketErrors/(numPkt-1);
 disp(['SNR ' num2str(snr(i))...
 ' completed after ' num2str(numPkt-1) ' packets,'...

 802.11ah Packet Error Rate Simulation for 2x2 TGah Channel

5-25

 ' PER: ' num2str(packetErrorRate(i))]);
end

SNR 25 completed after 123 packets, PER: 0.82114
SNR 35 completed after 922 packets, PER: 0.10954
SNR 45 completed after 1000 packets, PER: 0.013

Plot Packet Error Rate vs SNR Results

figure;
semilogy(snr,packetErrorRate,'-ob');
grid on;
xlabel('SNR (dB)');
ylabel('PER');
title(['802.11ah ' cfgS1G.Preamble ', ' num2str(cfgS1G.ChannelBandwidth(4:end)) ...
 'MHz, MCS' num2str(cfgS1G.MCS) ', ' ...
 num2str(tgahChannel.NumTransmitAntennas) 'x' num2str(tgahChannel.NumReceiveAntennas) ...
 ' TGah Channel ' num2str(tgahChannel.DelayProfile)]);

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters: maxNumErrors
and maxNumPackets. For meaningful results, these values should be larger than those presented in
this example. As an example, the figure below was created by running a longer simulation with
maxNumErrors = 1e3 and maxNumPackets = 1e4, and the SNR range snr = 20:8:60.

5 Propagation Channel Models

5-26

Selected Bibliography

1 IEEE P802.11ah™ D5.0 IEEE Draft Standard for Information technology - Telecommunications
and information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 2: Sub 1 GHz License Exempt Operation.

 802.11ah Packet Error Rate Simulation for 2x2 TGah Channel

5-27

Delay Profile and Fluorescent Lighting Effects

This example demonstrates the impact of changing the TGac delay profile, and it shows how
fluorescent lighting affects the time response of the channel.

Delay Profile Effects

Create VHT configuration object. Set the sample rate to 80 MHz.

cfgVHT = wlanVHTConfig;
fs = 80e6;

Generate random binary data and create a transmit waveform parameterized by the VHT
configuration object.

d = randi([0 1],8*cfgVHT.PSDULength,1);
testWaveform = wlanWaveformGenerator(d,cfgVHT);

Create a TGac channel object. Set the delay profile to 'Model-A', which corresponds to flat fading.
Disable large-scale fading effects.

tgacChan = wlanTGacChannel('SampleRate',fs, ...
 'ChannelBandwidth',cfgVHT.ChannelBandwidth, ...
 'DelayProfile','Model-A', ...
 'LargeScaleFadingEffect','None');

Pass the transmitted waveform through the TGac channel.

rxModelA = tgacChan(testWaveform);

Set the delay profile to Model-C, which corresponds to a multipath channel with 14 distinct paths and
a 30 ns RMS delay spread. The maximum delay spread is 200 ns, which corresponds to a coherence
bandwidth of 2.5 MHz.

release(tgacChan)
tgacChan.DelayProfile = 'Model-C';

Pass the waveform through the model-C channel.

rxModelC = tgacChan(testWaveform);

Create a spectrum analyzer and use it to visualize the spectrum of the received signals.

saScope = spectrumAnalyzer(SampleRate=fs, ...
 ShowLegend=true,ChannelNames={'Model-A','Model-C'},...
 AveragingMethod='exponential',ForgettingFactor=0.99);
saScope([rxModelA rxModelC])

5 Propagation Channel Models

5-28

As expected, the frequency response of the model-A signal is flat across the 80 MHz bandwidth.
Conversely, the model-C frequency response varies because its coherence bandwidth is much smaller
than the channel bandwidth.

Fluorescent Effects

Release the TGac channel, and set its delay profile to 'Model-D'. Disable the fluorescent lighting
effect.

release(tgacChan)
tgacChan.DelayProfile = 'Model-D';
tgacChan.FluorescentEffect = false;

To better illustrate the Doppler effects of fluorescent lighting, change the bandwidth and sample rate
of the channel. Generate a test waveform of ones.

tgacChan.ChannelBandwidth = 'CBW20';
fs = 20e6;
tgacChan.SampleRate = fs;
testWaveform = ones(5e5,1);

To ensure repeatability, set the global random number generator to a fixed value.

rng(37)

Pass the waveform through the TGac channel.

 Delay Profile and Fluorescent Lighting Effects

5-29

rxSig0 = tgacChan(testWaveform);

Enable the fluorescent lighting effect. Reset the random number generator, and pass the waveform
through the channel.

release(tgacChan)
tgacChan.FluorescentEffect = true;
rng(37)
rxSig1 = tgacChan(testWaveform);

Determine the time axis and channel filter delay.

t = ((1:size(rxSig0,1))'-1)/fs;
fDelay = tgacChan.info.ChannelFilterDelay;

Plot the magnitude of the received signals while accounting for the channel filter delay.

plot(t(fDelay+1:end),[abs(rxSig0(fDelay+1:end)) abs(rxSig1(fDelay+1:end))])
xlabel('Time (s)')
ylabel('Magnitude (V)')
legend('Fluorescent Off','Fluorescent On','location','best')

Fluorescent lighting introduces a Doppler component at twice the power line frequency (120 Hz in
the U.S.).

Confirm that the peaks are separated by approximately 0.0083 s (inverse of 120 Hz) by measuring
distance between the second and third peaks.

5 Propagation Channel Models

5-30

[~,loc] = findpeaks(abs(rxSig1(1e5:4e5)));
peakTimes = loc/fs;
peakSeparation = diff(peakTimes)

peakSeparation = 0.0085

 Delay Profile and Fluorescent Lighting Effects

5-31

End-to-End Simulation

6

Detect Human Presence Using WLAN Signals and Deep
Learning

This example shows how to use a convolutional neural network (CNN) to detect human presence by
using the channel state information (CSI) in wireless local area networks. In this example, you can
capture beacon frames from real routers with a software defined radio (SDR) to generate your own
sensing dataset, or you can use prerecorded data. Then you train a CNN that detects human
presence from the live SDR captures or the prerecorded data.

Introduction

WLAN sensing (also known as Wi-Fi™ sensing) uses Wi-Fi networks for applications such as gesture
recognition, location tracking, monitoring vital signs, and human presence detection. WLAN sensing
is currently being standardized by the IEEE® 802.11bf task group [1 on page 6-11]. This technology
can sense presence, range, velocity, and location of objects in various environments through subtle
changes in the communication channel. CSI is the most common metric for determining the changes
in the channel [2 on page 6-11]. However, CSI is not typically exposed to you as a user of
commercial Wi-Fi devices.

Using WLAN Toolbox™ with a supported SDR, you can capture WLAN waveforms, detect beacon
packets, and extract CSI. From this CSI, you create a collection of periodogram images to use as the
training and validation datasets for deep learning. Using Deep Learning Toolbox™, you train a CNN
and use the trained network for live detection of human presence. Alternatively, you can use the
prerecorded dataset to train the CNN and evaluate the presence detection performance against the
test dataset. Beacon packets are useful for WLAN sensing as access points (APs) transmit beacon
packets periodically. As a result, the sensing resolution is independent of the traffic load at the AP in
the temporal domain.

SDR Setup

This section explains how to set up an SDR for capturing the data that will be used in training and
live detection of human presence. If you do not have SDR hardware and plan to use the prerecorded
data, you can skip this section.

This example supports these SDRs:

• ADALM-Pluto from the Communications Toolbox Support Package for Analog Devices® ADALM-
Pluto Radio

6 End-to-End Simulation

6-2

• USRP™ E310/E312 from the Communications Toolbox Support Package for USRP™ Embedded
Series Radio

• AD936x/FMCOMMS5 from the Communications Toolbox Support Package for Xilinx® Zynq®-
Based Radio

• USRP™ N200/N210/USRP2/N320/N321/B200/B210/X300/X310 from the Communications Toolbox
Support Package for USRP™ Radio

1) Ensure that you have installed the appropriate support package for the SDR that you intend to use
and that you have configured the hardware accordingly.

2) To use your SDR as the data source for training the neural network and then inferencing with the
trained CNN, select the useSDR check box.

useSDR = ; % You can skip this section if unchecked

3) Specify your capture device (rxsim.DeviceName), radio gain (rxsim.RadioGain), and a channel
number (rxsim.ChannelNumber) for your operation frequency band (rxsim.FrequencyBand).
These settings determine the center frequency from which your SDR captures beacon packets. If you
do not know a channel number, use the “OFDM Beacon Receiver Using Software-Defined Radio” on
page 10-33 example to determine which channel(s) contain beacon packets.

if useSDR
 % User-defined parameters

 rxsim.DeviceName = ;

 rxsim.RadioGain = ; % Can be 'AGC Slow Attack', 'AGC Fast Attack', or an integer value. See relevant documentation for selected radio for valid values of radio gain.

 rxsim.ChannelNumber = ; % Valid values for 5 GHz band are integers in range [1, 200]
 rxsim.FrequencyBand = 5; % in GHz

 % Set up SDR receiver object
 rx = hSDRReceiver(rxsim.DeviceName);
 rx.SampleRate = 20e6; % Configured for 20 MHz since this is beacon transmission bandwidth
 rx.Gain = rxsim.RadioGain;
 rx.CenterFrequency = wlanChannelFrequency(rxsim.ChannelNumber,rxsim.FrequencyBand);
 rx.ChannelMapping = 1;
 rx.OutputDataType = 'single';

 rxsim.SDRObj = rx;
end

4) Configure these capture parameters:

• The number of beacon packets to be extracted from each capture
(rxsim.NumPacketsPerCapture).

• The number of captures needed to create the dataset and train the neural network
(rxsim.NumCaptures).

• The beacon interval (rxsim.BeaconInterval). The default beacon interval for a commercial AP
is 100 time units (TUs), where 1 TU equals 1024 microseconds. You typically do not need to adjust
the beacon interval value unless you have adjusted the interval of your access point (AP).

• Filter the beacons based on their SSID if more than one SSID exists on the same channel
(rxsim.BeaconSSID).

 Detect Human Presence Using WLAN Signals and Deep Learning

6-3

if useSDR %#ok<*UNRCH>
 % User defined parameters

 rxsim.NumCaptures = ;

 rxsim.NumPacketsPerCapture = ;

 rxsim.BeaconInterval = ; % in time units (TUs). The default value in typical APs is 100.

 rxsim.BeaconSSID = ; % Optional

 % Calculated parameters
 rxsim.CaptureDuration = rxsim.BeaconInterval*milliseconds(1.024)*rxsim.NumPacketsPerCapture + milliseconds(5.5); % Add 5.5 ms for beacons located at the end of the waveform

 % SDR setup is complete
 msgbox("SDR object configuration is complete! Run steps 1 and 2 to capture data.")
 return % Stop execution
end

System Description

This example uses the following process to obtain CSI images for human presence detection:

When you use an SDR, the system captures an over-the-air waveform and performs receiver
processing in WLAN Toolbox to extract the CSI from beacon packets. It does the same for all the
packets in a capture to form a numSubcarriers-by-rxsim.NumPacketsPerCapture raw CSI array.
Repeat this process for multiple captures to create an array of images. When you create the training
data, the system assigns "no-presence" or "presence" labels to the captures. It obtains the
periodogram representation of the raw CSI image array by using 2D-FFT, applying [0 1] range
scaling, and removing DC components along the x and y axes. CSI periodogram images make it easier
to focus on the CSI changes caused by human motion by discarding the effects of imperfections in the
hardware, software, or environment. This focus also improves the training performance. Next, you
use the periodogram images as an input dataset for CNN training and validation. Finally, you use the

6 End-to-End Simulation

6-4

trained CNN with live SDR captures to detect presence or test the performance of the CNN by using
a subset of the prerecorded dataset. When capturing training data or performing live detection, you
can visualize the magnitude spectrum and periodogram representation of the raw CSI.

This process was applied to obtain the prerecorded CSI dataset, which consists of 500 samples, with
250 labeled "no-presence" and 250 labeled "presence". When this dataset was being created, the
rxsim.NumCaptures parameter was set to 250. An ADALM-Pluto SDR captured over-the-air beacon
frames in a meeting room that contained furniture and had floor dimensions of 3m-by-3m. The beacon
interval (rxsim.BeaconInterval) of the AP was set to 20 TUs. Two different human presence
states were recorded: no presence (empty room) and presence (one person walking a random path).

Step 1: Create "no-presence" Data

In this section, you generate the "no-presence" data (dataNoPresence) and associated labels vector
(labelNoPresence).

• If you are using an SDR, make sure no human presence exists in the environment before you
create the data. The captureCSIDataset function displays the current capture number, status,
and timestamp (timestampNoPresence).

• If you are using the prerecorded dataset, the loadCSIDataset function generates the
dataNoPresence, labelNoPresence, timestampNoPresence parameters and visualizes the
CSI dataset.

To generate the data, click Create "no-presence" Data. Two plots are generated for each capture:

1 Magnitude spectrum of the captured CSI. Although the captured CSI is a complex valued array,
this example uses the magnitude response of the CSI for visualization.

2 CSI periodogram image.

In "no-presence" data, the power content of the CSI spreads over both axes of the periodogram
representation due to the lack of time-domain disturbance induced by the motion.

if useSDR % Capture live CSI with SDR
 [dataNoPresence,labelNoPresence,timestampNoPresence] = captureCSIDataset(rxsim,"no-presence");
else % No SDR hardware, load CSI dataset
 [dataNoPresence,labelNoPresence,timestampNoPresence] = loadCSIDataset("dataset-no-presence.mat","no-presence");
end

Dimensions of the no-presence dataset (numSubcarriers x numPackets x numCaptures): [52 8 250]

 Detect Human Presence Using WLAN Signals and Deep Learning

6-5

Step 2: Create "presence" Data

In this section, you generate the "presence" data (dataPresence) and associated labels vector
(labelPresence).

• If you are capturing data with an SDR, make sure constant human motion exists in the
environment before you create the data. Otherwise, the quality of the captured data could
significantly worsen the performance during training and inference. The captureCSIDataset
function displays the current capture number, status, timestamp (timestampPresence), and CSI
visualization.

• If you are using the prerecorded dataset, the loadCSIDataset function generates the
dataPresence, labelPresence, timestampPresence parameters and visualizes randomly
selected samples of the data. The "presence" data in the prerecorded dataset was collected with a
person walking constantly in the room for the duration of the capture.

The capture visualization techniques are the same as in step 1. For the "presence" data, the
periodogram plot shows focus of the CSI power content in both axes near the low frequency region
that corresponds to the center of the image.

6 End-to-End Simulation

6-6

if useSDR % Capture CSI with SDR
 [dataPresence,labelPresence,timestampPresence] = captureCSIDataset(rxsim,"presence");
else % No SDR hardware, load CSI dataset
 [dataPresence,labelPresence,timestampPresence] = loadCSIDataset("dataset-presence.mat","presence");
end

Dimensions of the presence dataset (numSubcarriers x numPackets x numCaptures): [52 8 250]

Step 3: Create and Train CNN

CNNs are one of the most computationally efficient, accurate, and scalable approaches to problems
involving deep learning. Their predominant application is to deep learning tasks based on computer
vision [3 on page 6-11]. In this section, you define the CNN architecture and divide the data into
training (trainingData) and validation (validationData) datasets to evaluate the training and
final network performance.

• If you are using an SDR, you can evaluate the accuracy of the trained CNN using the live capture
results. The example does not create a test set if you use an SDR.

 Detect Human Presence Using WLAN Signals and Deep Learning

6-7

• If you are using the precaptured data, you can evaluate the performance of the trained CNN using
a test set (testData).

To create, train and validate the CNN click Create CNN and Train.

trainingRatio = 0.8;
numEpochs = 10;
sizeMiniBatch = 8;

Use the trainValTestSplit function to create array datastore objects trainingData. This
process is based on the trainingRatio parameter. A training dataset (trainingData), which
comprises 80% of the whole dataset, updates the weights of the CNN to fit the general characteristics
of the data. This process is based on the training labels contained in the array datastore object. A
validation dataset (validationData), which comprises 10% of the whole dataset, ensures that the
model is learning the general behavior of the system rather than memorizing the patterns in it.
Finally, a test dataset, which also comprises 10% of the whole dataset, evaluates the performance of
the trained CNN using unseen samples of the data. If you are using an SDR, the size of
validationData becomes 20% of the whole dataset, because the testing is based on the human
presence status inferences of the trained CNN.

[trainingData,validationData,testData,imgInputSize,numClasses] = trainValTestSplit(useSDR,trainingRatio,dataNoPresence,labelNoPresence,dataPresence,labelPresence);

CSI image input size: [51 7]
Number of training images: 400

The example uses CSI periodogram images with size (numSubcarriers-1)-by-
(rxsim.NumPacketsPerCapture-1) as the training input. Use the “Create Simple Deep Learning
Neural Network for Classification” (Deep Learning Toolbox) example to learn more about the
individual layers and their roles in the architecture.

cnn = [
 imageInputLayer(imgInputSize,'Normalization','none')
 convolution2dLayer(3,8,'Padding','same')
 batchNormalizationLayer
 reluLayer

 maxPooling2dLayer(2,'Stride',2)

 convolution2dLayer(3,16,'Padding','same')
 batchNormalizationLayer
 reluLayer

 maxPooling2dLayer(2,'Stride',2)

 convolution2dLayer(3,32,'Padding','same')
 batchNormalizationLayer
 reluLayer

 dropoutLayer(0.1)
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer];

cnn = layerGraph(cnn);
disp(cnn.Layers)

6 End-to-End Simulation

6-8

 16x1 Layer array with layers:

 1 'imageinput' Image Input 51x7x1 images
 2 'conv_1' 2-D Convolution 8 3x3 convolutions with stride [1 1] and padding 'same'
 3 'batchnorm_1' Batch Normalization Batch normalization
 4 'relu_1' ReLU ReLU
 5 'maxpool_1' 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 6 'conv_2' 2-D Convolution 16 3x3 convolutions with stride [1 1] and padding 'same'
 7 'batchnorm_2' Batch Normalization Batch normalization
 8 'relu_2' ReLU ReLU
 9 'maxpool_2' 2-D Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]
 10 'conv_3' 2-D Convolution 32 3x3 convolutions with stride [1 1] and padding 'same'
 11 'batchnorm_3' Batch Normalization Batch normalization
 12 'relu_3' ReLU ReLU
 13 'dropout' Dropout 10% dropout
 14 'fc' Fully Connected 2 fully connected layer
 15 'softmax' Softmax softmax
 16 'classoutput' Classification Output crossentropyex

% Definition of the training options
options = trainingOptions('adam', ...
 LearnRateSchedule='piecewise', ...
 InitialLearnRate=0.001, ... % learning rate
 MaxEpochs=numEpochs, ...
 MiniBatchSize=sizeMiniBatch, ...
 ValidationData=validationData, ...
 Shuffle='every-epoch', ...
 ExecutionEnvironment='auto',...
 Verbose=true);

Train the deep network architecture cnn using the training dataset trainingData and the training
options defined by options.

% Train the network
trainedCNN = trainNetwork(trainingData,cnn,options);

Training on single CPU.
|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation | Base Learning |
| | | (hh:mm:ss) | Accuracy | Accuracy | Loss | Loss | Rate |
|==|
1	1	00:00:01	37.50%	84.00%	0.8120	0.6155	0.0010
1	50	00:00:03	100.00%	100.00%	0.0085	0.0150	0.0010
2	100	00:00:05	100.00%	100.00%	0.0059	0.0055	0.0010
3	150	00:00:07	100.00%	100.00%	0.0134	0.0179	0.0010
4	200	00:00:09	100.00%	100.00%	0.0029	0.0024	0.0010
5	250	00:00:11	100.00%	100.00%	0.0123	0.0047	0.0010
6	300	00:00:13	100.00%	100.00%	0.0012	0.0007	0.0010
7	350	00:00:15	100.00%	100.00%	0.0008	0.0005	0.0010
8	400	00:00:17	100.00%	100.00%	0.0006	0.0192	0.0010
9	450	00:00:18	100.00%	100.00%	0.0001	0.0006	0.0010
10	500	00:00:20	100.00%	100.00%	0.0002	0.0063	0.0010
==							
Training finished: Max epochs completed.

Step 4: Evaluate Performance

In this section, you evaluate the performance of the neural network using training data or live
inference with an SDR.

 Detect Human Presence Using WLAN Signals and Deep Learning

6-9

• If you are using an SDR, this example uses the livePresenceDetection function to capture
over-the-air beacons and infer human presence ("no-presence" or "presence") using the trained
CNN that is for each capture. The function plots the instantaneous raw CSI and CSI periodogram
plots, as described in steps 1 and 2, for each capture. The timestamped results for the 10 latest
predictions are plotted. By default, livePresenceDetection runs for 20 captures. You can set
numCaptures argument to any integer value. For continuous capturing, you can set
numCaptures to Inf. The function returns results in the 1-by-2 cell array sensingResults. The
first element is the prediction results and the second element is the timestamps. Note that
sensingResults will not be created if livePresenceDetection is in the continuous capturing
mode.

• If you are using the prerecorded data, this example uses the testPresenceDetection function
to generate a confusion matrix in which the rows correspond to the ground truth values ("no-
presence" or "presence") and the columns correspond to the CNN predictions ("no-presence" or
"presence"). The diagonal elements represent the percentage of samples that are correctly
classified. The off-diagonal elements are the percentage of incorrectly classified observations. The
sensing accuracy value is calculated using the testData and returned in sensingResults.

To run the evaluation, click Evaluate Performance.

if useSDR % Predict movement from the live SDR captures
 sensingResults = livePresenceDetection(rxsim,trainedCNN,20);
else % Predict movement by using the test set
 sensingResults = testPresenceDetection(testData,trainedCNN);
end

6 End-to-End Simulation

6-10

References

[1] IEEE P802.11 - TASK GROUP BF (WLAN SENSING), https://www.ieee802.org/11/Reports/
tgbf_update.htm.

[2] IEEE 802.11-21/0407r2 - Multi-Band WiFi Fusion for WLAN Sensing, March 2021, https://
mentor.ieee.org/802.11/dcn/21/11-21-0407-00-00bf-multi-band-wifi-fusion-for-wlan-sensing.pptx.

[3] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document
recognition," in Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278–2324, Nov. 1998, doi:
10.1109/5.726791.

See Also

Related Examples
• “Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning” on

page 6-87
• “Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation” on

page 6-133

 Detect Human Presence Using WLAN Signals and Deep Learning

6-11

https://www.ieee802.org/11/Reports/tgbf_update.htm
https://www.ieee802.org/11/Reports/tgbf_update.htm
https://mentor.ieee.org/802.11/dcn/21/11-21-0407-00-00bf-multi-band-wifi-fusion-for-wlan-sensing.pptx
https://mentor.ieee.org/802.11/dcn/21/11-21-0407-00-00bf-multi-band-wifi-fusion-for-wlan-sensing.pptx

• “Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation” on
page 6-119

6 End-to-End Simulation

6-12

SNR Definition in End-to-End Simulations

This example shows how WLAN Toolbox™ defines signal-to-noise ratio (SNR) in end-to-end
simulations.

SNR Definition

WLAN Toolbox™ end-to-end simulation examples introduce AWGN to the received signal in the time
domain, after the fading channel, and before OFDM demodulation.

WLAN Toolbox defines the SNR as the expected SNR per subcarrier (SC) per receive antenna. In
IEEE Std 802.11-2020 [1 on page 6-16], the transmitter normalizes the waveform, so that the sum of
the baseband power over all transmit antennas is 1 W.

The expected SNR per subcarrier (SC) is denoted by SNRSC.

SNRSC =
SSC
NSC

SSC and NSC are the average signal and noise power per subcarrier per receive antenna, respectively.
NSC models the AWGN that is added to the signal.

For a signal x with discrete Fourier transform (DFT) X, Parseval's theorem states

∑
n = 1

NFFT
xn

2 = 1
NFFT

∑
k = 1

NFFT
Xk

2.

NFFT is the FFT length. Divide the equation by NFFT to get the average signal power

S = 1
NFFT

∑n = 1
NFFT xn

2 = 1
NFFT

2 ∑k = 1
NFFT Xk

2 = 1
NFFT

XRMS
2 .

In WLAN, the signal of interest does not use all FFT bins (or subcarriers) because of guard bands. If
the signal uses only KS subcarriers of the FFT, the signal power is

S =
KS

NFFT
1

NFFT
XRMS

2 =
KS

NFFT
2 XRMS

2 . (1)

KS is the number of nonzero power subcarriers per OFDM symbol.

The signal power per subcarrier is

 SNR Definition in End-to-End Simulations

6-13

SSC = S
KS

.

The noise power per subcarrier is

NSC = N
NFFT

.

Because the noise is added in the time domain, the noise occupies all subcarriers, not just the
allocated subcarriers. Therefore, the noise power, N, is divided by NFFT and not KS.

With these definitions, the SNRSC becomes

SNRSC =
SSC
NSC

=

KS
KSNFFT

2 XRMS
2

N
NFFT

=
XRMS

2

NFFTN . (2)

Rearranging equation 2, the noise power at the input of an OFDM demodulator is

N =
XRMS

2

NFFT SNRSC
. (3)

The awgn function adds noise in the time domain. If you use equation 1 and equation 3, the time-
domain SNR becomes

SNR = S
N =

KS XRMS
2

NNFFT
2

XRMS
2

NFFT SNRSC

=
SNRSC
NNFFT

KS

.

SNRSC is in decibels. The SNR in decibels is

SNR = SNRSC− 10log10
NFFT KS . (4)

SNR Verification

To verify your target SNR, you need to understand the process that WLAN Toolbox uses to simulate
an end-to-end link for the given SNR. For this example, WLAN Toolbox simulates an end-to-end link
and measures the SNR of the received packet as shown in the figure below. Multiple packets are
transmitted through a Fourier channel. A Fourier matrix in a MIMO system assumes that all receive
antennas are coupled with the transmit antennas. The matrix is orthogonal, so the spatial streams are
completely separate, resulting in no noise enhancement [2 on page 6-16].

The example uses the demodulated L-LTF field with and without noise to estimate the noise and
signal power of each packet, and hence, the SNR. The example displays the simulated SNR, which is
averaged over multiple packets.

6 End-to-End Simulation

6-14

For each packet, the following steps occur in the process:

1 Generate a non-HT waveform.
2 Set the required SNR according to Equation-4.
3 Pass the waveform through a Fourier channel.
4 Add AWGN to the received waveform to create the desired average SNR per subcarrier after

OFDM demodulation.
5 Extract and OFDM-demodulate the L-LTF field before and after adding noise.
6 Estimate the signal power by using the demodulated L-LTF symbols before adding noise.
7 Estimate the noise power by using the demodulated L-LTF symbols after adding noise.
8 Calculate and display the average SNR.

Simulation Setup

For this example specify a target SNR of 10 dB.

SNRSC = 10;
rng("default") % Set default random number generator for repeatability

Set the number of transmit and receive antennas.

nTxAnts = 2;
nRxAnts = 2;

Create a configuration object for an non-HT transmission.

cfg = wlanNonHTConfig;
cfg.NumTransmitAntennas = nTxAnts; % N transmit antennas

SNR Setup

Scale the SNR to account for energy in unused subcarriers according to equation 4.

ofdmInfo = wlanNonHTOFDMInfo('NonHT-Data',cfg); % Get the OFDM info
SNRdB = SNRSC-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

Simulate Link

Now simulate the transmission and verify that the measured SNR approximates your target SNR.

% Indices for accessing each field within the time-domain packet
ind = wlanFieldIndices(cfg);

 SNR Definition in End-to-End Simulations

6-15

N = 100;
nVar = zeros(1,N);
signalPower = zeros(1,N);

for i=1:N
 % Generate a packet waveform
 txPSDU = randi([0 1],cfg.PSDULength*8,1); % PSDULength in bytes
 tx = wlanWaveformGenerator(txPSDU,cfg);

 % Channel
 h = dftmtx(max(nTxAnts,nRxAnts)); % Fourier channel
 h = h(1:nTxAnts,1:nRxAnts);
 rx = tx*h;

 % Add noise
 rxNoise = awgn(rx,SNRdB);

 % Measure noise power by comparing L-LTF over 2 symbols. The noise
 % power is averaged across receive antennas.
 lltf = rxNoise(ind.LLTF(1):ind.LLTF(2),:);
 lltfDemod = wlanNonHTOFDMDemodulate(lltf,'L-LTF',cfg);
 nVar(i) = wlanLLTFNoiseEstimate(lltfDemod);

 % Measure signal power before noise addition
 lltf = rx(ind.LLTF(1):ind.LLTF(2),:);
 lltfDemod = wlanNonHTOFDMDemodulate(lltf,'L-LTF',cfg);
 signalPower(i) = mean(lltfDemod.*conj(lltfDemod),'all');
end

% Measure SNR
measuredSNR = signalPower./nVar;

% Verify that the measured SNR approximates the target SNR
disp(['Measured SNR ' num2str(10*log10(mean(measuredSNR))) ' dB'])

Measured SNR 10.0758 dB

References

1 IEEE Std 802.11 - 2020. Telecommunications and Information Exchange between Systems Local
and Metropolitan Area Networks Specific Requirements.

2 Perahia, Eldad, and Robert Stacey. Next Generation Wireless LANS: 802.11n and 802.11ac.
Cambridge University Press, 2013.

See Also
Functions
awgn

6 End-to-End Simulation

6-16

802.11be Packet Error Rate Simulation for Uplink Trigger-
Based Format

This example shows how to measure the packet error rate of an IEEE® 802.11be™ (Wi-Fi 7)
extremely high-throughput (EHT) uplink, trigger-based (TB) format.

Introduction

The 802.11be [1] EHT trigger-based (EHT TB) format allows for OFDMA or MU-MIMO transmission
in the uplink. The AP controls the EHT TB transmission and provides the required parameters to all
stations (STAs) participating in the transmission using a trigger frame. Each STA transmits an EHT
TB packet simultaneously, when triggered by the AP as shown in the following diagram.

This example uses an end-to-end simulation to determine the packet error rate of an EHT TB link for
four STAs in an MU-MIMO configuration. The transmitter sends multiple packets at each SNR point,
with no impairments apart from channel and noise. The receiver demodulates the packets and
recovers the PSDUs for each STA. The example compares the recovered PSDUs to the transmitted
PSDUs to determine the number of packet errors, and hence, the packet error rate for all users. The
receiver performs packet detection, timing synchronization, and symbol equalization. This example
does not perform frequency offset correction. The EHT TB processing chain is shown in the following
diagram.

 802.11be Packet Error Rate Simulation for Uplink Trigger-Based Format

6-17

The receiver performs a minimum-mean-square-error-based ordered successive interference
cancellation (MMSE-SIC) process for data equalization [2]. To avoid error propagation in the
cancellation stage, data streams for all STAs are sorted in descending order based on the channel
state information and equalized sequentially. This diagram shows the MMSE-SIC equalization
procedure.

Equalization Method

In this example, you can specify the equalization method as 'mmse' or 'mmse-sic'. The default
equalizer is 'mmse-sic'.

equalizationMethod = 'mmse-sic';

User Configuration

This example configures the allocation and transmit parameters for multiple uplink STAs using an
ehtTBSystemConfig object.

cfgSys = ehtTBSystemConfig('CBW20','NumUsers',4);

In a trigger-based transmission some parameters are the same for all uplink users, while some can
differ. The User property of cfgSys contains a cell array of user configurations. Each element of the
cell array is an object which sets the parameters of an individual user. In this example, all users have
the same transmission parameters.

% These parameters are the same for all users in the MU-MIMO system
cfgSys.EHTLTFType = 4; % EHT-LTF compression mode
cfgSys.GuardInterval = 3.2; % Guard interval type
numRx = 8; % Number of receive(AP) antennas

% The individual parameters for each user are specified below

6 End-to-End Simulation

6-18

allocInfo = ruInfo(cfgSys);
numUsers = allocInfo.NumUsers; % Number of uplink users

for userIdx = 1:numUsers
 cfgSys.User{userIdx}.NumTransmitAntennas = 1;
 cfgSys.User{userIdx}.NumSpaceTimeStreams = 1;
 cfgSys.User{userIdx}.SpatialMapping = 'Direct';
 cfgSys.User{userIdx}.MCS = 7;
 cfgSys.User{userIdx}.APEPLength = 1e3;
 cfgSys.User{userIdx}.ChannelCoding = 'LDPC';
end

Use a wlanEHTTBConfig object to configure a trigger-based transmission for a single user within
the system. The method userConfig configures the transmission for all users. This example creates
a cell array of four EHT TB objects which describes the transmission of four users.

cfgTB = userConfig(cfgSys);

Simulation Parameters

For each SNR point (dB) in the snr vector, the example generates a number of packets. These are
passed through a channel and demodulated to determine the packet error rate.

snr = 20:2:24;

% The sample rate and field indices for the EHT TB packet are the same for
% all users. Use the trigger configuration of the first user to get the
% sample rate and field indices of the EHT TB PPDU.
fs = wlanSampleRate(cfgTB{1}); % Same for all users
ind = wlanFieldIndices(cfgTB{1}); % Same for all users

Channel Configuration

This example uses a TGax NLOS indoor channel model with delay profile Model-B. Model-B is in non-
line of sight (NLOS) when the distance between the transmitter and receiver is greater than or equal
to 5 meters. This is described further in wlanTGaxChannel. In this example all STAs are at the same
distance from the AP.

tgaxBase = wlanTGaxChannel;
tgaxBase.SampleRate = fs;
tgaxBase.TransmissionDirection = 'Uplink';
tgaxBase.TransmitReceiveDistance = 10;
chanBW = cfgSys.ChannelBandwidth;
tgaxBase.ChannelBandwidth = chanBW;
tgaxBase.NumReceiveAntennas = numRx;
tgaxBase.NormalizeChannelOutputs = false;

The example creates individual channels for each of the four users. Each channel is a clone of
tgaxBase, but with a different UserIndex property, and is stored in a cell array tgax. The
UserIndex property of each individual channel is set to provide a unique channel for each user. This
example uses a random channel realization for each packet by randomly varying the UserIndex
property for each transmitted packet.

% A cell array stores the channel objects, one per user
tgax = cell(1,numUsers);
for userIdx = 1:numUsers
 tgax{userIdx} = clone(tgaxBase);
 tgax{userIdx}.NumTransmitAntennas = cfgSys.User{userIdx}.NumTransmitAntennas;

 802.11be Packet Error Rate Simulation for Uplink Trigger-Based Format

6-19

 tgax{userIdx}.UserIndex = userIdx;
end

Processing SNR Points

For each SNR point, the example tests a number of packets and calculates the packet error rate. The
pre-EHT preamble of 802.11be is backwards compatible with 802.11ax™. Therefore, this example
uses the timing synchronization components of an 802.11ax waveform to synchronize the EHT
waveform at the receiver. For each user, the example follows these processing steps to create a
waveform at the receiver containing all four users:

1 To create an EHT TB waveform, create and encode a PSDU for each user, based on predefined
user parameters.

2 Pass the waveform for each user through an indoor TGax channel model. The randomly varying
UserIndex property of the channel creates different channel realizations for each user. This
results in different spatial correlation properties for each user.

3 Scale and combine the waveforms for all EHT TB users to ensure the same SNR for each user
after the addition of noise.

4 Add AWGN to the received waveform. This is to create the desired average SNR per active
subcarrier after OFDM demodulation.

The receiver (AP) follows these processing steps:

1 Detect the packet.
2 Perform fine timing synchronization. The L-STF, L-LTF and L-SIG samples provide fine timing to

allow for packet detection at the start or end of the L-STF.
3 Extract EHT-LTF and EHT-Data fields for all users after synchronization of the received

waveform. OFDM demodulate the EHT-LTF and EHT-Data fields.
4 Perform channel estimation on the demodulated EHT-LTF symbols for each RU.
5 Perform noise estimation using the demodulated data field pilots for each RU.
6 Extract and demodulate the data field and perform equalization for all users within an RU.
7 Recover PSDU bits for each RU and user within the RU by demodulating and decoding the spatial

streams for a user.

You can use a parfor loop to parallelize processing of the SNR points. To enable the use of parallel
computing for increased speed, comment out the 'for' statement and uncomment the 'parfor'
statement below.

ofdmInfo = wlanEHTOFDMInfo('EHT-Data',cfgTB{1});
numSNR = numel(snr); % Number of SNR points
numPackets = 50; % Number of packets to simulate
packetErrorRate = zeros(numUsers,numSNR);
txPSDU = cell(numUsers);

% parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
for isnr = 1:numSNR
 % Create EHT TB object for receiver processing
 cfgEHTTB = wlanEHTTBConfig;
 cfgEHTTB.ChannelBandwidth = cfgSys.ChannelBandwidth;
 cfgEHTTB.EHTLTFType = cfgSys.EHTLTFType;

 % Set random substream index per iteration to ensure that each

6 End-to-End Simulation

6-20

 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % RU allocation information
 sysInfo = ruInfo(cfgSys);

 % Simulate multiple packets
 numPacketErrors = zeros(numUsers,1);
 for pktIdx = 1:numPackets

 % Transmit processing
 rxWaveform = 0;
 packetError = zeros(numUsers,1);
 txPSDU = cell(1,numUsers);

 % Generate random channel realization for each packet by varying
 % the UserIndex property of the channel. This assumes all users
 % have the same number of transmit antennas.
 chPermutations = randperm(numUsers);
 for userIdx = 1:numUsers
 % EHT TB config object for each user
 cfgUser = cfgTB{userIdx};

 % Generate a packet with random PSDU
 txPSDU{userIdx} = randi([0 1],psduLength(cfgUser)*8,1,'int8');

 % Generate EHT TB waveform, containing payload for single user
 txTrig = wlanWaveformGenerator(txPSDU{userIdx},cfgUser);

 % Pass waveform through a random TGax Channel
 channelIdx = chPermutations(userIdx);
 reset(tgax{channelIdx}); % New channel realization
 rxTrig = tgax{channelIdx}([txTrig; zeros(15,size(txTrig,2))]);

 % Scale the transmit power of the user within an RU. This is to
 % ensure the same SNR for each user after the addition of noise.
 ruNum = cfgSys.User{userIdx}.RUNumber;
 SF = sqrt(1/sysInfo.NumUsersPerRU(ruNum))*sqrt(sum(cfgUser.RUSize)/(sum(cell2mat(sysInfo.RUSizes))));

 % Combine uplink users into one waveform
 rxWaveform = rxWaveform+SF*rxTrig;
 end

 % Pass the waveform through AWGN channel. Account for noise energy
 % in nulls so the SNR is defined per active subcarriers.
 packetSNR = snr(isnr)-10*log10(ofdmInfo.FFTLength/(sum(cell2mat(sysInfo.RUSizes))));
 rxWaveform = awgn(rxWaveform,packetSNR);

 % Receive processing
 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rxWaveform,chanBW);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;
 continue; % Go to next loop iteration
 end

 802.11be Packet Error Rate Simulation for Uplink Trigger-Based Format

6-21

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rxWaveform(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,chanBW);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected out with the range of expected delays from
 % the channel modeling; packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 continue; % Go to next loop iteration
 end

 % Extract EHT-LTF and EHT-Data fields for all RUs
 rxLTF = rxWaveform(pktOffset+(ind.EHTLTF(1):ind.EHTLTF(2)),:);
 rxData = rxWaveform(pktOffset+(ind.EHTData(1):ind.EHTData(2)),:);

 for ruIdx = 1:allocInfo.NumRUs
 userNumber = cfgSys.RU{ruIdx}.UserNumbers; % Same for all users
 cfgUserRef = cfgTB{userNumber(1)}; % Reference user configuration

 % Demodulate EHT-LTF and EHT-Data field
 demodLTFRU = wlanEHTDemodulate(rxLTF,'EHT-LTF',cfgUserRef);
 demodDataRU = wlanEHTDemodulate(rxData,'EHT-Data',cfgUserRef);

 % Configure the relevant properties in EHT TB object
 cfgEHTTB.RUSize = allocInfo.RUSizes{ruIdx};
 cfgEHTTB.RUIndex = allocInfo.RUIndices{ruIdx};
 cfgEHTTB.NumSpaceTimeStreams = allocInfo.NumSpaceTimeStreamsPerRU(ruIdx);

 % Channel estimate
 [chanEst,ssPilotEst] = wlanEHTLTFChannelEstimate(demodLTFRU,cfgEHTTB);

 % Get indices of data and pilots within RU (without nulls)
 ruOFDMInfo = wlanEHTOFDMInfo('EHT-Data',cfgUserRef);

 % Estimate noise power in EHT fields of each user
 nVarEst = ehtNoiseEstimate(demodDataRU(ruOFDMInfo.PilotIndices,:,:),ssPilotEst,cfgUserRef);

 % Discard pilot subcarriers
 demodDataSym = demodDataRU(ruOFDMInfo.DataIndices,:,:);
 chanEstData = chanEst(ruOFDMInfo.DataIndices,:,:);

 % Equalize
 if strcmpi(equalizationMethod,'mmse-sic')
 [eqSym,csi] = heSuccessiveEqualize(demodDataSym,chanEstData,nVarEst,cfgSys,ruIdx);
 else
 [eqSym,csi] = ehtEqualizeCombine(demodDataSym,chanEstData,nVarEst,cfgTB{userNumber(1)});
 end

 for userIdx = 1:allocInfo.NumUsersPerRU(ruIdx)
 % Get TB config object for each user
 userNum = cfgSys.RU{ruIdx}.UserNumbers(userIdx); % User within an RU
 cfgUserTB = cfgTB{userNum};

 % Get space-time stream indices for the current user
 stsIdx = cfgUserTB.StartingSpaceTimeStream-1+(1:cfgUserTB.NumSpaceTimeStreams);

6 End-to-End Simulation

6-22

 % Demap and decode bits
 rxPSDU = wlanEHTDataBitRecover(eqSym(:,:,stsIdx),nVarEst,csi(:,stsIdx),cfgUserTB);

 % PER calculation
 packetError(userNum) = any(biterr(txPSDU{userNum},rxPSDU));
 end
 end
 numPacketErrors = numPacketErrors+packetError;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(:,isnr)= numPacketErrors/numPackets;
 disp(['SNR ' num2str(snr(isnr)) ...
 ' completed for ' num2str(numUsers) ' users']);

end

SNR 20 completed for 4 users
SNR 22 completed for 4 users
SNR 24 completed for 4 users

Plot Packet Error Rate vs SNR

markers = 'ox*sd^v><ph+ox*sd^v';
color = 'bmcrgbrkymcrgbrkymc';
figure;

for nSTA = 1:numUsers
 semilogy(snr,packetErrorRate(nSTA,:).',['-' markers(nSTA) color(nSTA)]);
 hold on;
end

grid on;
xlabel('SNR (dB)');
ylabel('PER');
dataStr = arrayfun(@(x)sprintf('STA-%d',x),1:numUsers,'UniformOutput',false);
legend(dataStr);
title('PER for uplink 802.11be link');

 802.11be Packet Error Rate Simulation for Uplink Trigger-Based Format

6-23

The numPackets controls the number of packets at each SNR point. For meaningful results, this
value should be larger than those presented in this example. The figure below was created by running
a longer simulation with numPackets:1e4 and snr:20:2:28, which shows the packet error rate of
both MMSE equalizer and MMSE-SIC equalizer.

6 End-to-End Simulation

6-24

Selected Bibliography

1 IEEE P802.11be™/D2.0. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 8: Enhancements for extremely high throughput (EHT).

2 M. Debbah, B. Muquet, M. de Courville, M. Muck, S. Simoens, and P. Loubaton. A MMSE
successive interference cancellation scheme for a new adjustable hybrid spread OFDM system.
IEEE 51st Vehicular Technology Conference Proceedings, pp. 745-749, vol. 2, 2000.

See Also

Related Examples
• “802.11be Packet Error Rate Simulation for an EHT MU Single-User Packet Format” on page 6-

37
• “802.11be Waveform Generation” on page 1-18

 802.11be Packet Error Rate Simulation for Uplink Trigger-Based Format

6-25

802.11be Downlink Multi-User MIMO and OFDMA Throughput
Simulation

This example shows transmit and receive processing for an IEEE® 802.11be™ (Wi-Fi 7) extremely
high throughput (EHT) multi-user (MU) downlink transmission over a TGax indoor fading channel. It
simulates two PPDU types: MU-MIMO and OFDMA.

Introduction

This example simulates an access point (AP) transmitting to four stations (STAs) simultaneously using
the EHT MU packet format as specified in [1 on page 6-36].

You can configure the EHT MU format for MU-MIMO transmission or OFDMA transmission. This
flexibility allows an EHT MU packet to transmit to a single user over the whole band, or multiple
users over different parts of the band (OFDMA). In this example, two transmission PPDU types are
simulated for the multi-user downlink scenario:

1 MU-MIMO transmission - all four users share the full band.
2 OFDMA transmission - two users share a large-size multiple resource unit (MRU), and the

remaining two users are assigned a single resource unit (RU) each.

For a detailed overview of 802.11be PPDU types, see the “802.11be Waveform Generation” on page 1-
18 example.

6 End-to-End Simulation

6-26

For each PPDU type, the AP transmits a burst of 10 packets, and each STA demodulates and decodes
the data intended for it. An evolving TGax indoor MIMO channel with AWGN is modeled between the
AP and each STA. The raw AP throughput is calculated by counting the number of packets
transmitted successfully to all STAs. The simulation repeats for different path losses. In this example,
all the transmissions are beamformed. Therefore, before simulating the data transmission, the
channel between the AP and each station is sounded under perfect conditions to obtain the channel
state information (CSI).

Transmission Configuration

Use a wlanEHTMUConfig object to configure the transmission of an EHT MU packet. Specify two
transmission configuration objects to define the two different AP transmissions:

1 cfgMUMIMO is an 80 MHz MU-MIMO configuration that consists of a single 996-tone RU with
four users. Each user has one space-time stream.

2 cfgOFDMA is an 80 MHz OFDMA configuration that consists of a 484+282-tone MRU with two
users, a 106-tone and a 106+26-tone RU, each with one user. Each user has two space-time
streams.

The other transmission parameters, such as the guard interval, EHT-LTF type, APEPLength, and MCS,
are the same for all users in all configurations.

First, define an 80 MHz bandwidth and a single 996-tone RU with four users for the MU-MIMO
configuration. For a description of multiple users in an MU-MIMO configuration over the full channel
bandwidth, see the “802.11be Waveform Generation” on page 1-18 example.

% MU-MIMO configuration - 4 users on one 996-tone RU
cfgMUMIMO = wlanEHTMUConfig('CBW80','NumUsers',4);

The allocation plot shows a single RU assigned to all four users.

showAllocation(cfgMUMIMO);

 802.11be Downlink Multi-User MIMO and OFDMA Throughput Simulation

6-27

Configure the transmission parameters for each user.

numTx = 6; % Number of transmit antennas
guardInterval = 3.2; % Guard interval in microseconds
ltfType = 4; % EHT-LTF type
apepLength = 1e3; % APEP length in bytes
mcs = 4; % MCS

% Configure common parameters for all users
cfgMUMIMO.NumTransmitAntennas = numTx;
cfgMUMIMO.GuardInterval = guardInterval;
cfgMUMIMO.EHTLTFType = ltfType;

% Configure per user parameters
% STA #1
cfgMUMIMO.User{1}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{1}.MCS = mcs;
cfgMUMIMO.User{1}.APEPLength = apepLength;
% STA #2
cfgMUMIMO.User{2}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{2}.MCS = mcs;
cfgMUMIMO.User{2}.APEPLength = apepLength;
% STA #3
cfgMUMIMO.User{3}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{3}.MCS = mcs;
cfgMUMIMO.User{3}.APEPLength = apepLength;
% STA #4

6 End-to-End Simulation

6-28

cfgMUMIMO.User{4}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{4}.MCS = mcs;
cfgMUMIMO.User{4}.APEPLength = apepLength;

Next, define the OFDMA configuration. The allocation index [105 50 29 29] defines a 484+242-
tone MRU with two users as well as a 106+26-tone and 106-tone RU, each serving a single user.

% OFDMA configuration - 4 users, two on a 484+242-tone MRU, one on a
% 106+26-tone RU, and one on 106-tone RU
cfgOFDMA = wlanEHTMUConfig([105 50 29 29]);

The allocation plot shows the MRU with two users and two RUs, each with a single user. When
comparing this allocation plot to the full band MU-MIMO plot, you can see that the total number of
subcarriers used (484+242+106+26+106 = 964 subcarriers) is less than the MU-MIMO allocation
(996 subcarriers). The smaller number of subcarriers allows guards between MRU and single RU
users.

showAllocation(cfgOFDMA);

Configure the transmission parameters for each user.

% Configure common parameters for all users
cfgOFDMA.NumTransmitAntennas = numTx;
cfgOFDMA.GuardInterval = guardInterval;
cfgOFDMA.EHTLTFType = ltfType;

% Configure per user parameters

 802.11be Downlink Multi-User MIMO and OFDMA Throughput Simulation

6-29

% STA #1 (RU #1)
cfgOFDMA.User{1}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{1}.MCS = mcs;
cfgOFDMA.User{1}.APEPLength = apepLength;
% STA #2 (RU #1)
cfgOFDMA.User{2}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{2}.MCS = mcs;
cfgOFDMA.User{2}.APEPLength = apepLength;
% STA #3 (RU #2)
cfgOFDMA.User{3}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{3}.MCS = mcs;
cfgOFDMA.User{3}.APEPLength = apepLength;
% STA #4 (RU #3)
cfgOFDMA.User{4}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{4}.MCS = mcs;
cfgOFDMA.User{4}.APEPLength = apepLength;

Channel Model Configuration

A TGax indoor channel model is used in this example. An individual channel is used to simulate the
link between the AP and each user. Create a TGax channel object, tgaxBase, with properties
relevant for all users. In this example, the delay profile (Model-B) and the number of receive antennas
are common for all users. When the distance between transmitter and receiver is greater than or
equal to 5 meters, Model-B is considered non-line of sight. This is described further in
wlanTGaxChannel. Use a fixed seed for the channel to allow repeatability.

% Create channel configuration common for all users
tgaxBase = wlanTGaxChannel;
tgaxBase.DelayProfile = 'Model-B'; % Delay profile
tgaxBase.NumTransmitAntennas = numTx; % Number of transmit antennas
tgaxBase.NumReceiveAntennas = 2; % Each user has two receive antennas
tgaxBase.TransmitReceiveDistance = 5; % Non-line of sight distance
tgaxBase.ChannelBandwidth = cfgMUMIMO.ChannelBandwidth;
tgaxBase.SampleRate = wlanSampleRate(cfgMUMIMO);
% Set a fixed seed for the channel
tgaxBase.RandomStream = 'mt19937ar with seed';
tgaxBase.Seed = 5;

Next, create a channel for each user. The channel for each user is a clone of tgaxBase, with a unique
UserIndex property, stored in a cell array tgax. Set the UserIndex property of each individual
channel to provide a unique channel for each user. The resultant channels are shown below.

6 End-to-End Simulation

6-30

% A cell array stores the channel objects, one per user
numUsers = numel(cfgMUMIMO.User); % Number of users simulated in this example
tgax = cell(1,numUsers);

% Generate per-user channels
for userIdx = 1:numUsers
 tgax{userIdx} = clone(tgaxBase);
 tgax{userIdx}.UserIndex = userIdx; % Set unique user index
end

Beamforming Feedback

Transmit beamforming for both MU-MIMO and OFDMA relies on knowledge of the channel state
between transmitter and receiver at the beamformer. To set up the channel for beamforming in this
example, each STA provides feedback of the per-subcarrier channel state using channel sounding.
The AP transmits a null data packet (NDP), and each STA uses this packet to determine the channel
state. They then feed the channel state back to the AP. The same process is used for the “802.11ax
Downlink OFDMA and Multi-User MIMO Throughput Simulation” on page 6-51 example. The
ehtUserBeamformingFeedback helper function detects the NDP and uses channel estimation to
determine the CSI. Singular value decomposition (SVD) is then used to calculate the beamforming
feedback.

% Create an NDP with the correct number of space-time streams to generate
% enough LTF symbols
cfgNDP = wlanEHTMUConfig(tgaxBase.ChannelBandwidth);
cfgNDP.GuardInterval = guardInterval;
cfgNDP.EHTLTFType = ltfType;
cfgNDP.NumTransmitAntennas = cfgMUMIMO.NumTransmitAntennas;
cfgNDP.User{1}.APEPLength = 0; % No data in an NDP
cfgNDP.User{1}.NumSpaceTimeStreams = cfgMUMIMO.NumTransmitAntennas;

% Generate NDP packet - with an empty PSDU as no data
txNDP = wlanWaveformGenerator([],cfgNDP);

 802.11be Downlink Multi-User MIMO and OFDMA Throughput Simulation

6-31

% For each user STA, pass the NDP packet through the channel and calculate
% the feedback channel state matrix by SVD.
staFeedback = cell(1,numUsers);
for userIdx = 1:numel(tgax)
 % Received waveform at user STA with 50 sample padding. No noise.
 rx = tgax{userIdx}([txNDP; zeros(50,size(txNDP,2))]);

 % Get the full-band beamforming feedback for a user
 staFeedback{userIdx} = ehtUserBeamformingFeedback(rx,cfgNDP);
end

Simulation Settings

This example simulates different path losses. To set up for path loss simulation, apply the same path
loss and noise floor to all users. For each path loss specify 10 packets to pass through the channel.
Separate the packets by 20 microseconds.

cfgSim = struct;
cfgSim.NumPackets = 10; % Number of packets to simulate for each path loss
cfgSim.Pathloss = (97:2:103); % Path loss to simulate in dB
cfgSim.TransmitPower = 30; % AP transmit power in dBm
cfgSim.NoiseFloor = -89.9; % STA noise floor in dBm
cfgSim.IdleTime = 20; % Idle time between packets in μs

MU-MIMO Simulation

For this exercise, you first simulate the MU-MIMO configuration. To calculate the beamforming
matrix for an RU given the CSI feedback for all users in the MU-MIMO allocation, use the
ehtMUCalculateSteeringMatrix helper function. Use a zero forcing solution to calculate the
steering matrix within the helper function.

% Calculate the steering matrix to apply to the RU given the feedback
ruIdx = 1; % Index of the one and only RU
steeringMatrix = ehtMUCalculateSteeringMatrix(staFeedback,cfgMUMIMO,cfgNDP,ruIdx);

% Apply the steering matrix to the RU
cfgMUMIMO.RU{1}.SpatialMapping = 'Custom';
cfgMUMIMO.RU{1}.SpatialMappingMatrix = steeringMatrix;

The ehtMUSimulateScenario helper function performs the simulation. The pre-EHT preamble of
802.11be is backwards compatible with 802.11ac. Therefore, in this example, the front-end
synchronization components for a VHT waveform are used to synchronize the EHT waveform at each
STA. For each packet and path loss simulated, the following process occurs:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through an evolving TGax channel model and AWGN is added to the

received waveform. The channel state is maintained between packets.
3 The packet is detected.
4 Coarse carrier frequency offset is estimated and corrected.
5 Fine timing synchronization is established.
6 Fine carrier frequency offset is estimated and corrected.
7 The EHT-LTF is extracted from the synchronized received waveform. The EHT-LTF is OFDM

demodulated and channel estimation is performed.

6 End-to-End Simulation

6-32

8 The EHT-Data field is extracted from the synchronized received waveform and OFDM
demodulated.

9 Common pilot phase tracking is performed to track any residual carrier frequency offset.
10 The phase corrected OFDM symbols are equalized with the channel estimate.
11 Noise estimation is performed using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers.
12 The equalized symbols are demodulated and decoded to recover the PSDU.
13 The recovered PSDU is compared to the transmitted PSDU to determine if the packet has been

recovered successfully.

Run the simulation for the MU-MIMO configuration.

disp('Simulating MU-MIMO...');

Simulating MU-MIMO...

throughputMUMIMO = ehtMUSimulateScenario(cfgMUMIMO,tgax,cfgSim);

 Pathloss 97.0 dB, AP throughput 173.9 Mbps
 Pathloss 99.0 dB, AP throughput 173.9 Mbps
 Pathloss 101.0 dB, AP throughput 43.5 Mbps
 Pathloss 103.0 dB, AP throughput 0.0 Mbps

Plot the raw AP throughput of the MU-MIMO simulation. The throughput accounts for the packet
duration including the idle time, the APEP length of each user, and the number of successfully
decoded packets. The results show for this channel realization at high SNRs (low path loss) that the
throughput provided by the MU-MIMO configuration is considerable. However, the throughput drops
dramatically when the noise dominates (low SNRs).

% Sum throughput for all STAs and plot for all configurations
figure;
plot(cfgSim.Pathloss,sum(throughputMUMIMO,2),'-o');
grid on;
xlabel('Pathloss (dB)');
ylabel('Throughput (Mbps)');
title('Raw AP Throughput of MU-MIMO Transmission');

 802.11be Downlink Multi-User MIMO and OFDMA Throughput Simulation

6-33

OFDMA Simulation

Now simulate the OFDMA configuration and transmit beamforming.

Calculate the steering matrix for each RU by using the feedback from the STAs. To calculate the
beamforming matrix for an RU given the CSI feedback, use the ehtMUCalculateSteeringMatrix
helper function..

% For each RU, calculate the steering matrix to apply
for ruIdx = 1:numel(cfgOFDMA.RU)
 % Calculate the steering matrix to apply to the RU given the feedback
 steeringMatrix = ehtMUCalculateSteeringMatrix(staFeedback,cfgOFDMA,cfgNDP,ruIdx);

 % Apply the steering matrix to each RU
 cfgOFDMA.RU{ruIdx}.SpatialMapping = 'Custom';
 cfgOFDMA.RU{ruIdx}.SpatialMappingMatrix = steeringMatrix;
end

Run the simulation for the OFDMA configuration.

disp('Simulating OFDMA...');

Simulating OFDMA...

throughputOFDMA = ehtMUSimulateScenario(cfgOFDMA,tgax,cfgSim);

 Pathloss 97.0 dB, AP throughput 88.9 Mbps
 Pathloss 99.0 dB, AP throughput 44.4 Mbps

6 End-to-End Simulation

6-34

 Pathloss 101.0 dB, AP throughput 44.4 Mbps
 Pathloss 103.0 dB, AP throughput 44.4 Mbps

Plot the raw AP throughput of the OFDMA simulation. The results show that, as the path loss
increases, several packets fail to be decoded for some users and the overall raw throughput drops.

% Sum throughput for all STAs and plot for all configurations
figure;
plot(cfgSim.Pathloss,sum(throughputOFDMA,2),'-o');
grid on;
xlabel('Pathloss (dB)');
ylabel('Throughput (Mbps)');
title('Raw AP Throughput of OFDMA Transmission');

Conclusion

This example shows how to simulate the downlink throughput for MU-MIMO and OFDMA
configurations of 802.11be waveforms. Because throughput depends on many factors that differ
between the two cases, such as RU size and the number of space-time streams, comparing the
downlink throughput of MU-MIMO and OFDMA configurations is challenging.

In this example, for the OFDMA configuration, the RU sizes of User 3 and User 4 are much smaller
than those of User 1 and User 2. The APEP length is the same for all users. Therefore, the OFDMA
packet duration is limited by the smallest RU size, resulting in a long packet duration and the
throughput is limited.

 802.11be Downlink Multi-User MIMO and OFDMA Throughput Simulation

6-35

References

1 IEEE Std 802.11be™/D2.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 8: Enhancements for Extremely High Throughput (EHT).

6 End-to-End Simulation

6-36

802.11be Packet Error Rate Simulation for an EHT MU Single-
User Packet Format

This example shows how to measure the packet error rate of an IEEE® 802.11be™ Extremely High
Throughput multi-user (EHT MU) packet format link with a single user.

Introduction

This example determines the packet error rate for an 802.11be [1] single-user (SU) link by using an
end-to-end simulation for a selection of signal-to-noise ratio (SNR) points. At each SNR point, the
example simulates the transmission of multiple packets through a noisy TGax indoor channel, then
demodulates the received packets and recovers the PSDUs. The example then compares the
transmitted and received packets to determine the packet error rate. This diagram shows the
processing steps for each packet.

Waveform Configuration

An EHT MU SU packet is a full-band transmission to a single user. Configure the transmission
parameters for an SU packet format by using the wlanEHTMUConfig object. The properties of the
object contain the physical layer (PHY) configuration.

Create a configuration object for an EHT MU transmission, setting a channel bandwidth of 20 MHz,
an APEP length of 1000 bytes, two transmit antennas, two space-time streams, and a modulation and
coding scheme (MCS) value of 13, which specifies 4096-point quadrature amplitude modulation
(4096-QAM) and a coding rate of 5/6. If you specify mcs as a vector, the example performs the
simulation for each MCS index value.

chanBW = 'CBW20'; % Channel bandwidth
cfgEHT = wlanEHTMUConfig(chanBW);
cfgEHT.User{1}.APEPLength = 1e3; % APEP length (bytes)
numTx = 2; % Number of transmit antennas
numRx = 2; % Number of receive antennas
cfgEHT.NumTransmitAntennas = numTx;

 802.11be Packet Error Rate Simulation for an EHT MU Single-User Packet Format

6-37

cfgEHT.User{1}.NumSpaceTimeStreams = numTx; % Number of space-time streams
mcs = 13; % MCS index

Channel Configuration

This example uses a TGax non-line-of-sight (NLOS) indoor channel model with delay profile Model-B.
Model-B is considered NLOS when the distance between transmitter and receiver is greater than or
equal to 5 meters. For more information about the TGax channel model, see wlanTGaxChannel.

% Create and configure a 2x2 MIMO channel.
tgaxChannel = wlanTGaxChannel;
tgaxChannel.DelayProfile = 'Model-B';
tgaxChannel.NumTransmitAntennas = cfgEHT.NumTransmitAntennas;
tgaxChannel.NumReceiveAntennas = numRx;
tgaxChannel.TransmitReceiveDistance = 5; % Distance in meters for NLOS
tgaxChannel.ChannelBandwidth = chanBW;
tgaxChannel.LargeScaleFadingEffect = 'None';
fs = wlanSampleRate(chanBW);
tgaxChannel.SampleRate = fs;

Simulation Parameters

For each SNR point in snrRange, the example generates the specified number of packets, passes the
packets through a channel, then demodulates the received signal to determine the packet error rate.
Set the SNR values in the snrRange parameter to simulate the transition from all packets being
decoded in error to all packets being decoded successfully as the SNR value increases for MCS 13. If
you specify snrRange as a matrix, each row represents the SNR points for the corresponding MCS
index, defined in mcs.

snrRange = 37:5:57; % Set the range of SNR values

These parameters control the number of packets tested for each SNR point.

1 maxNumErrors: the maximum number of packet errors simulated for each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets: the maximum number of packets simulated for each SNR point, which limits
the length of the simulation if the simulation does not reach the packet error limit.

The default parameter values lead to a very short simulation. For meaningful results, increase these
values.

maxNumErrors = 10;
maxNumPackets = 100;

Processing SNR Points

This section measures the packet error rate for each SNR point by performing these processing steps
for the specified number of packets.

1 Create a PSDU and encode to generate a single-packet waveform.
2 Pass the waveform through an indoor TGax channel model, using different channel realizations

for each packet.
3 Add AWGN to the received waveform to create the desired average SNR per subcarrier after

OFDM demodulation. The configuration accounts for the normalization within the channel by the
number of receive antennas and the noise energy in unused subcarriers. The example removes
the unused subcarriers during OFDM demodulation.

6 End-to-End Simulation

6-38

4 Detect the packet
5 Estimate and correct coarse carrier frequency offset (CFO)
6 Perform fine timing synchronization by using L-STF, L-LTF, and L-SIG samples. This

synchronization enables packet detection at the start or end of the L-STF.
7 Estimate and correct fine CFO
8 Extract the EHT-LTF from the synchronized received waveform
9 OFDM demodulate the EHT-LTF and perform channel estimation
10 Extract the data field from the synchronized received waveform and perform OFDM

demodulation
11 Track any residual CFO by performing common phase error pilot tracking
12 Perform noise estimation by using the demodulated data field pilots and single-stream channel

estimation at pilot subcarriers
13 Equalize the phase corrected OFDM symbols by using channel estimation
14 Recover the PSDU by demodulating and decoding the equalized symbols

This example also demonstrates how to speed up simulations by using a parfor loop instead of a for
loop when simulating each SNR point. The parfor function executes processing for each SNR in
parallel to reduce the total simulation time. Use a parfor loop to parallelize processing of the SNR
points. To use parallel computing for increased speed, comment out the for statement and
uncomment the parfor statement in this code.

numSNR = size(snrRange,2); % Number of SNR points
numMCS = numel(mcs); % Number of MCS
packetErrorRate = zeros(numMCS,numSNR);

for imcs = 1:numel(mcs)
 cfgEHT.User{1}.MCS = mcs(imcs);
 ofdmInfo = wlanEHTOFDMInfo('EHT-Data',cfgEHT);
 % SNR points to simulate from MCS
 snr = snrRange(imcs,:);
 ind = wlanFieldIndices(cfgEHT);

 %parfor isnr = 1:numSNR % Use parfor to speed up the simulation
 for isnr = 1:numSNR % Use for to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',99);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Define the SNR per active subcarrier to account for noise energy
 % in nulls
 snrValue = snr(isnr)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate waveform
 txPSDU = randi([0 1],psduLength(cfgEHT)*8,1); % PSDULength (bytes)
 tx = wlanWaveformGenerator(txPSDU,cfgEHT);

 802.11be Packet Error Rate Simulation for an EHT MU Single-User Packet Format

6-39

 % Add trailing zeros to allow for channel delay
 txPad = [tx; zeros(50,cfgEHT.NumTransmitAntennas)];

 % Pass through fading indoor TGax channel
 reset(tgaxChannel); % Reset channel for different realization
 rx = tgaxChannel(txPad);

 % Pass waveform through an AWGN channel
 rx = awgn(rx,snrValue);

 % Detect packet and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,chanBW);
 if isempty(coarsePktOffset) % If empty no L-STF detected, packet error
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction
 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,chanBW);
 rx = frequencyOffset(rx,fs,-coarseFreqOff);

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,chanBW);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected outwith range of expected delays from
 % the channel modeling, packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 rxLLTF = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(rxLLTF,chanBW);
 rx = frequencyOffset(rx,fs,-fineFreqOff);

 % EHT-LTF demodulation and channel estimation
 rxHELTF = rx(pktOffset+(ind.EHTLTF(1):ind.EHTLTF(2)),:);
 heltfDemod = wlanEHTDemodulate(rxHELTF,'EHT-LTF',cfgEHT);
 [chanEst,pilotEst] = wlanEHTLTFChannelEstimate(heltfDemod,cfgEHT);

 % Demodulate the Data field
 rxData = rx(pktOffset+(ind.EHTData(1):ind.EHTData(2)),:);
 demodSym = wlanEHTDemodulate(rxData,'EHT-Data',cfgEHT);

 % Perform pilot phase tracking
 demodSym = wlanEHTTrackPilotError(demodSym,chanEst,cfgEHT,'EHT-Data');

 % Estimate noise power in EHT fields
 nVarEst = ehtNoiseEstimate(demodSym(ofdmInfo.PilotIndices,:,:),pilotEst,cfgEHT);

6 End-to-End Simulation

6-40

 % Extract data subcarriers from demodulated symbols and channel
 % estimate
 demodDataSym = demodSym(ofdmInfo.DataIndices,:,:);
 chanEstData = chanEst(ofdmInfo.DataIndices,:,:);

 % Equalization
 [eqSym,csi] = ehtEqualizeCombine(demodDataSym,chanEstData,nVarEst,cfgEHT);

 % Recover data field bits
 rxPSDU = wlanEHTDataBitRecover(eqSym,nVarEst,csi,cfgEHT);

 % Determine if any bits are in error
 packetError = any(biterr(txPSDU,rxPSDU));
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate PER at SNR point
 packetErrorRate(imcs,isnr) = numPacketErrors/(numPkt-1);
 disp(['MCS ' num2str(mcs(imcs)) ','...
 ' SNR ' num2str(snr(isnr)) ...
 ' completed after ' num2str(numPkt-1) ' packets,'...
 ' PER:' num2str(packetErrorRate(imcs,isnr))]);
 end
end

MCS 13, SNR 37 completed after 11 packets, PER:1
MCS 13, SNR 42 completed after 11 packets, PER:1
MCS 13, SNR 47 completed after 20 packets, PER:0.55
MCS 13, SNR 52 completed after 63 packets, PER:0.1746
MCS 13, SNR 57 completed after 100 packets, PER:0.01

Plot Packet Error Rate vs SNR

markers = 'ox*sd^v><ph+ox*sd^v><ph+';
color = 'bmcrgbrkymcrbmcrgbrkymcr';
figure;
for imcs = 1:numMCS
 semilogy(snrRange(imcs,:),packetErrorRate(imcs,:).',['-' markers(imcs) color(imcs)]);
 hold on;
end
grid on;
xlabel('SNR (dB)');
ylabel('PER');
dataStr = arrayfun(@(x)sprintf('MCS %d',x),mcs,'UniformOutput',false);
legend(dataStr,'Location','NorthEastOutside');
title(['PER (EHT MU), ' num2str(cfgEHT.ChannelBandwidth) ', Model-B, ' num2str(numTx) '-by-' num2str(numRx)]);

 802.11be Packet Error Rate Simulation for an EHT MU Single-User Packet Format

6-41

Further Exploration

The maxNumErrors and maxNumPackets parameters control the number of packets tested for each
SNR point. For meaningful results, increase these values. For example, this figure shows results for a
channel bandwidth of 320 MHz, an APEP length of 16000 bytes, MCS values of 0-13, a
maxNumErrors value of 100, and a maxNumPackets value of 1000. The corresponding SNR values
for MCS between 0 and 13 are:

snrRange = [...
 8:1:13; ... % MCS 0
 8:2:18; ... % MCS 1
 16:2:26; ... % MCS 2
 18:2:28; ... % MCS 3
 24:2:34; ... % MCS 4
 26:2:36; ... % MCS 5
 28:2:38; ... % MCS 6
 32:2:42; ... % MCS 7
 34:2:44; ... % MCS 8
 36:2:46; ... % MCS 9
 38:2:48; ... % MCS 10
 42:2:52; ... % MCS 11
 44:2:54; ... % MCS 12
 45:3:60]; ...% MCS 13

6 End-to-End Simulation

6-42

Selected Bibliography

1 IEEE Std 802.11be™/D2.0 Draft Standard for Information technology - Telecommunications and
information exchange between systems Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 8: Enhancements for Extremely High Throughput (EHT).

 802.11be Packet Error Rate Simulation for an EHT MU Single-User Packet Format

6-43

802.11ax Packet Error Rate Simulation for Single-User Format

This example shows how to measure the packet error rate of an IEEE® 802.11ax™ (Wi-Fi 6) high
efficiency (HE) single user format link.

Introduction

In this example, an end-to-end simulation is used to determine the packet error rate for an 802.11ax
[1] single user format link for a selection of SNR points. At each SNR point, multiple packets are
transmitted through a noisy TGax indoor channel, demodulated and the PSDUs recovered. The
PSDUs are compared to those transmitted to determine the packet error rate. The processing for
each packet is summarized in the following diagram.

Waveform Configuration

An HE single user (SU) packet is a full-band transmission to a single user. The transmit parameters
for the HE SU format are configured using an wlanHESUConfig object. The properties of the object
contain the configuration. In this example, the object is configured for a 20 MHz channel bandwidth,
2 transmit antennas, 2 space-time streams, no space time block coding and 16-QAM rate-1/2 (MCS 3).

cfgHE = wlanHESUConfig;
cfgHE.ChannelBandwidth = 'CBW20'; % Channel bandwidth
cfgHE.NumSpaceTimeStreams = 2; % Number of space-time streams
cfgHE.NumTransmitAntennas = 2; % Number of transmit antennas
cfgHE.APEPLength = 1e3; % Payload length in bytes
cfgHE.ExtendedRange = false; % Do not use extended range format
cfgHE.Upper106ToneRU = false; % Do not use upper 106 tone RU
cfgHE.PreHESpatialMapping = false; % Spatial mapping of pre-HE fields
cfgHE.GuardInterval = 0.8; % Guard interval duration
cfgHE.HELTFType = 4; % HE-LTF compression mode
cfgHE.ChannelCoding = 'LDPC'; % Channel coding
cfgHE.MCS = 3; % Modulation and coding scheme

6 End-to-End Simulation

6-44

Channel Configuration

In this example, a TGax NLOS indoor channel model is used with delay profile Model-B. Model-B is
considered NLOS when the distance between transmitter and receiver is greater than or equal to 5
meters. This is described further in wlanTGaxChannel. A 2x2 MIMO channel is simulated in this
example.

% Create and configure the TGax channel
chanBW = cfgHE.ChannelBandwidth;
tgaxChannel = wlanTGaxChannel;
tgaxChannel.DelayProfile = 'Model-B';
tgaxChannel.NumTransmitAntennas = cfgHE.NumTransmitAntennas;
tgaxChannel.NumReceiveAntennas = 2;
tgaxChannel.TransmitReceiveDistance = 5; % Distance in meters for NLOS
tgaxChannel.ChannelBandwidth = chanBW;
tgaxChannel.LargeScaleFadingEffect = 'None';
tgaxChannel.NormalizeChannelOutputs = false;
fs = wlanSampleRate(cfgHE);
tgaxChannel.SampleRate = fs;

Simulation Parameters

For each SNR point (dB) in the snr vector a number of packets are generated, passed through a
channel and demodulated to determine the packet error rate.

snr = 10:5:35;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For statistically meaningful
results we recommend increasing these numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % The maximum number of packets at an SNR point

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated. The pre-HE
preamble of 802.11ax is backwards compatible with 802.11ac™, therefore in this example the front-
end synchronization components for a VHT waveform are used to synchronize the HE waveform at
the receiver. For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through an indoor TGax channel model. Different channel realizations

are modeled for different packets.
3 AWGN is added to the received waveform to create the desired average SNR per active

subcarrier after OFDM demodulation.
4 The packet is detected.
5 Coarse carrier frequency offset is estimated and corrected.

 802.11ax Packet Error Rate Simulation for Single-User Format

6-45

6 Fine timing synchronization is established. The L-STF, L-LTF and L-SIG samples are provided for
fine timing to allow for packet detection at the start or end of the L-STF.

7 Fine carrier frequency offset is estimated and corrected.
8 The HE-LTF is extracted from the synchronized received waveform. The HE-LTF is OFDM

demodulated and channel estimation is performed.
9 The data field is extracted from the synchronized received waveform and OFDM demodulated.
10 Common phase error pilot tracking is performed to track any residual carrier frequency offset.
11 Noise estimation is performed using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers.
12 The phase corrected OFDM symbols are equalized with the channel estimate.
13 The equalized symbols are demodulated and decoded to recover the PSDU.

A parfor loop can be used to parallelize processing of the SNR points. To enable the use of parallel
computing for increased speed comment out the 'for' statement and uncomment the 'parfor'
statement below.

numSNR = numel(snr); % Number of SNR points
packetErrorRate = zeros(1,numSNR);

% Get occupied subcarrier indices and OFDM parameters
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgHE);

% Indices to extract fields from the PPDU
ind = wlanFieldIndices(cfgHE);

%parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
for isnr = 1:numSNR
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',99);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Account for noise energy in nulls so the SNR is defined per
 % active subcarrier
 packetSNR = snr(isnr)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet with random PSDU
 psduLength = getPSDULength(cfgHE); % PSDU length in bytes
 txPSDU = randi([0 1],psduLength*8,1);
 tx = wlanWaveformGenerator(txPSDU,cfgHE);

 % Add trailing zeros to allow for channel delay
 txPad = [tx; zeros(50,cfgHE.NumTransmitAntennas)];

 % Pass through a fading indoor TGax channel
 reset(tgaxChannel); % Reset channel for different realization
 rx = tgaxChannel(txPad);

 % Pass the waveform through AWGN channel

6 End-to-End Simulation

6-46

 rx = awgn(rx,packetSNR);

 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,chanBW);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction
 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,chanBW);
 rx = frequencyOffset(rx,fs,-coarseFreqOff);

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,chanBW);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected outwith the range of expected delays from
 % the channel modeling; packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 rxLLTF = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(rxLLTF,chanBW);
 rx = frequencyOffset(rx,fs,-fineFreqOff);

 % HE-LTF demodulation and channel estimation
 rxHELTF = rx(pktOffset+(ind.HELTF(1):ind.HELTF(2)),:);
 heltfDemod = wlanHEDemodulate(rxHELTF,'HE-LTF',cfgHE);
 [chanEst,pilotEst] = wlanHELTFChannelEstimate(heltfDemod,cfgHE);

 % Data demodulate
 rxData = rx(pktOffset+(ind.HEData(1):ind.HEData(2)),:);
 demodSym = wlanHEDemodulate(rxData,'HE-Data',cfgHE);

 % Pilot phase tracking
 demodSym = wlanHETrackPilotError(demodSym,chanEst,cfgHE,'HE-Data');

 % Estimate noise power in HE fields
 nVarEst = heNoiseEstimate(demodSym(ofdmInfo.PilotIndices,:,:),pilotEst,cfgHE);

 % Extract data subcarriers from demodulated symbols and channel
 % estimate
 demodDataSym = demodSym(ofdmInfo.DataIndices,:,:);
 chanEstData = chanEst(ofdmInfo.DataIndices,:,:);

 % Equalization and STBC combining
 [eqDataSym,csi] = heEqualizeCombine(demodDataSym,chanEstData,nVarEst,cfgHE);

 802.11ax Packet Error Rate Simulation for Single-User Format

6-47

 % Recover data
 rxPSDU = wlanHEDataBitRecover(eqDataSym,nVarEst,csi,cfgHE,'LDPCDecodingMethod','norm-min-sum');

 % Determine if any bits are in error, i.e. a packet error
 packetError = ~isequal(txPSDU,rxPSDU);
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(isnr) = numPacketErrors/(numPkt-1);
 disp(['MCS ' num2str(cfgHE.MCS) ','...
 ' SNR ' num2str(snr(isnr)) ...
 ' completed after ' num2str(numPkt-1) ' packets,'...
 ' PER:' num2str(packetErrorRate(isnr))]);
end

MCS 3, SNR 10 completed after 11 packets, PER:1
MCS 3, SNR 15 completed after 17 packets, PER:0.64706
MCS 3, SNR 20 completed after 52 packets, PER:0.21154
MCS 3, SNR 25 completed after 100 packets, PER:0.03
MCS 3, SNR 30 completed after 100 packets, PER:0
MCS 3, SNR 35 completed after 100 packets, PER:0

Plot Packet Error Rate vs SNR

figure;
semilogy(snr,packetErrorRate,'-*');
hold on;
grid on;
xlabel('SNR (dB)');
ylabel('PER');
dataStr = arrayfun(@(x)sprintf('MCS %d',x),cfgHE.MCS,'UniformOutput',false);
legend(dataStr);
title(sprintf('PER for HE Channel %s, %s, %s, PSDULength: %d',tgaxChannel.DelayProfile,cfgHE.ChannelBandwidth,cfgHE.ChannelCoding,cfgHE.APEPLength));

6 End-to-End Simulation

6-48

The number of packets tested at each SNR point is controlled by two parameters: maxNumErrors
and maxNumPackets. For meaningful results, these values should be larger than those presented in
this example. As an example, the figure below was created by running a longer simulation with
maxNumErrors:1e3 and maxNumPackets:1e4.

 802.11ax Packet Error Rate Simulation for Single-User Format

6-49

Appendix

This example uses the following helper functions:

• heEqualizeCombine.m
• heNoiseEstimate.m

Selected Bibliography

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

6 End-to-End Simulation

6-50

802.11ax Downlink OFDMA and Multi-User MIMO Throughput
Simulation

This example shows the transmit and receive processing for an IEEE® 802.11ax™ multi-user
downlink transmission over a TGax indoor fading channel. Three transmission modes are simulated:
OFDMA, MU-MIMO, and a combination of OFDMA and MU-MIMO.

Introduction

This example simulates a scenario of an access point (AP) transmitting to four stations (STAs)
simultaneously using high efficiency (HE) multi-user (MU) format packets as specified in IEEE Std
802.11ax™-2021 [1].

The HE multi-user format can be configured for an OFDMA transmission, a MU-MIMO transmission,
or a combination of the two. This flexibility allows an HE-MU packet to transmit to a single user over
the whole band, multiple users over different parts of the band (OFDMA), or multiple users over the
same part of the band (MU-MIMO).

Three transmission modes are compared for the multi-user downlink scenario:

1 OFDMA - each of the four users is assigned a separate resource unit (RU) and the transmission is
beamformed.

2 MU-MIMO - all four users share the full band.
3 Mixed MU-MIMO and OFDMA - Two users share a single RU in a MU-MIMO configuration, and

the remaining two users are assigned a single RU each.

For a detailed overview of 802.11ax formats, see the “802.11ax Waveform Generation” on page 1-64
example.

For each transmission mode, the AP transmits a burst of 10 packets, and each STA demodulates and
decodes the data intended for it. An evolving TGax indoor MIMO channel with AWGN is modeled
between the AP and each STA. The raw AP throughput is provided as a metric to compare the
transmission modes and is calculated by counting the number of packets transmitted successfully to

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-51

all STAs. The simulation is repeated for different path losses. In this example, all the transmissions
are beamformed. Therefore, before simulating the data transmission, the channel between the AP and
each station is sounded under perfect conditions to obtain channel state information.

Transmission Configuration

An wlanHEMUConfig object is used to configure the transmission of an HE-MU packet. Three
transmission configuration objects are specified to define the three different AP transmissions:

1 cfgMUMIMO is a MU-MIMO configuration which consists of a single 242-tone RU with 4 users.
Each user has one space-time stream.

2 cfgOFDMA is an OFDMA configuration which consists of four 52-tone RUs, each with one user.
Each user has two space-time streams.

3 cfgMixed is a mixed OFDMA and MU-MIMO configuration which consists of one 106-tone RU
shared by two users, and two 52-tone RUs, each with one user. The MU-MIMO users each have
one space-time stream, and the OFDMA users each have two space-time streams.

A 20 MHz channel bandwidth is used for all transmissions. Other transmission parameters such as
the APEPLength and MCS are the same for all users in all configurations.

First, the MU-MIMO configuration is defined. The allocation index 195 defines a single 242-tone RU,
with four users in MU-MIMO. For a description of selecting an allocation index, see the “802.11ax
Waveform Generation” on page 1-64 example.

% MU-MIMO configuration - 4 users on one 242-tone RU
cfgMUMIMO = wlanHEMUConfig(195);

The allocation plot shows a single RU is assigned to all four users.

showAllocation(cfgMUMIMO);

6 End-to-End Simulation

6-52

The transmission parameters for each user are now configured.

numTx = 6; % Number of transmit antennas
guardInterval = 0.8; % Guard interval in Microseconds

% Configure common parameters for all users
cfgMUMIMO.NumTransmitAntennas = numTx;
cfgMUMIMO.GuardInterval = guardInterval;

% Configure per user parameters
% STA #1
cfgMUMIMO.User{1}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{1}.MCS = 4;
cfgMUMIMO.User{1}.APEPLength = 1000;
% STA #2
cfgMUMIMO.User{2}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{2}.MCS = 4;
cfgMUMIMO.User{2}.APEPLength = 1000;
% STA #3
cfgMUMIMO.User{3}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{3}.MCS = 4;
cfgMUMIMO.User{3}.APEPLength = 1000;
% STA #4
cfgMUMIMO.User{4}.NumSpaceTimeStreams = 1;
cfgMUMIMO.User{4}.MCS = 4;
cfgMUMIMO.User{4}.APEPLength = 1000;

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-53

Next the OFDMA configuration is defined. The allocation index 112 defines four 52-tone RUs, each
serving a single user.

% OFDMA configuration - 4 users, each on a 52-tone RU
cfgOFDMA = wlanHEMUConfig(112);

The allocation plot shows the four RUs, each with a single user. When comparing this allocation plot
to the full band MU-MIMO plot, it is apparent that the total number of subcarriers used (4x52 = 208
subcarriers) is less than the MU-MIMO allocation (242 subcarriers). The fewer number of subcarriers
allow guards between each OFDMA user.

showAllocation(cfgOFDMA);

The transmission parameters for each user are now configured.

% Configure common parameters for all users
cfgOFDMA.NumTransmitAntennas = numTx;
cfgOFDMA.GuardInterval = guardInterval;

% Configure per user parameters
% STA #1 (RU #1)
cfgOFDMA.User{1}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{1}.MCS = 4;
cfgOFDMA.User{1}.APEPLength = 1000;
% STA #2 (RU #2)
cfgOFDMA.User{2}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{2}.MCS = 4;

6 End-to-End Simulation

6-54

cfgOFDMA.User{2}.APEPLength = 1000;
% STA #3 (RU #3)
cfgOFDMA.User{3}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{3}.MCS = 4;
cfgOFDMA.User{3}.APEPLength = 1000;
% STA #4 (RU #4)
cfgOFDMA.User{4}.NumSpaceTimeStreams = 2;
cfgOFDMA.User{4}.MCS = 4;
cfgOFDMA.User{4}.APEPLength = 1000;

Finally, the mixed MU-MIMO and OFDMA configuration is defined. The allocation index 25 defines a
106-tone RU with two users, and two 52-tone RUs, each with one user.

% Mixed OFDMA and MU-MIMO configuration
cfgMixed = wlanHEMUConfig(25);

The allocation plot shows the three RUs, one with 2 users (MU-MIMO), and the others with one user
each (OFDMA).

showAllocation(cfgMixed);

The transmission parameters for each user are now configured.

% Configure common parameters for all users
cfgMixed.NumTransmitAntennas = numTx;
cfgMixed.GuardInterval = guardInterval;

% Configure per user parameters

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-55

% RU #1 has two users (MU-MIMO) and a total of 2 STS (1 per user)
% STA #1 (RU #1)
cfgMixed.User{1}.NumSpaceTimeStreams = 1;
cfgMixed.User{1}.MCS = 4;
cfgMixed.User{1}.APEPLength = 1000;
% STA #2 (RU #1)
cfgMixed.User{2}.NumSpaceTimeStreams = 1;
cfgMixed.User{2}.MCS = 4;
cfgMixed.User{2}.APEPLength = 1000;

% The remaining two users are OFDMA
% STA #3 (RU #2)
cfgMixed.User{3}.NumSpaceTimeStreams = 2;
cfgMixed.User{3}.MCS = 4;
cfgMixed.User{3}.APEPLength = 1000;
% STA #4 (RU #3)
cfgMixed.User{4}.NumSpaceTimeStreams = 2;
cfgMixed.User{4}.MCS = 4;
cfgMixed.User{4}.APEPLength = 1000;

Channel Model Configuration

A TGax indoor channel model is used in this example. An individual channel is used to simulate the
link between the AP and each user. A TGax channel object, tgaxBase is created with properties
relevant for all users. In this example, the delay profile (Model-D) and number of receive antennas
are common for all users. Model-D is considered non-line of sight when the distance between
transmitter and receiver is greater than or equal to 10 meters. This is described further in
wlanTGaxChannel. A fixed seed is used for the channel to allow repeatability.

% Create channel configuration common for all users
tgaxBase = wlanTGaxChannel;
tgaxBase.DelayProfile = 'Model-D'; % Delay profile
tgaxBase.NumTransmitAntennas = numTx; % Number of transmit antennas
tgaxBase.NumReceiveAntennas = 2; % Each user has two receive antennas
tgaxBase.TransmitReceiveDistance = 10; % Non-line of sight distance
tgaxBase.ChannelBandwidth = cfgMUMIMO.ChannelBandwidth;
tgaxBase.SampleRate = wlanSampleRate(cfgMUMIMO);
% Set a fixed seed for the channel
tgaxBase.RandomStream = 'mt19937ar with seed';
tgaxBase.Seed = 5;

Next a channel is created for each user. The channel for each user is a clone of the tgaxBase, but
with a unique UserIndex property, and is stored in a cell array tgax. The UserIndex property of
each individual channel is set to provide a unique channel for each user. The resultant channels are
used in the simulation as shown below.

6 End-to-End Simulation

6-56

% A cell array stores the channel objects, one per user
numUsers = numel(cfgMixed.User); % Number of users simulated in this example
tgax = cell(1,numUsers);

% Generate per-user channels
for userIdx = 1:numUsers
 tgax{userIdx} = clone(tgaxBase);
 tgax{userIdx}.UserIndex = userIdx; % Set unique user index
end

Beamforming Feedback

Transmit beamforming for both OFDMA and MU-MIMO relies on knowledge of the channel state
between transmitter and receiver at the beamformer. Feedback of the per-subcarrier channel state is
provided by each STA by channel sounding. A null data packet (NDP) is transmitted by the AP, and
each STA uses this packet to determine the channel state. The channel state is then fed-back to the
AP. The same process is used for 802.11ac™ in the “802.11ac Transmit Beamforming” on page 3-26
and “802.11ac Multi-User MIMO Precoding” on page 1-93 examples, but an HE single user NDP
packet is used instead of a VHT packet. In this example, the feedback is considered perfect; there is
no noise present for channel sounding and the feedback is uncompressed. The
heUserBeamformingFeedback helper function detects the NDP and uses channel estimation to
determine the channel state information. Singular value decomposition (SVD) is then used to
calculate the beamforming feedback.

% Create an NDP with the correct number of space-time streams to generate
% enough LTF symbols
cfgNDP = wlanHESUConfig('APEPLength',0,'GuardInterval',0.8); % No data in an NDP
cfgNDP.ChannelBandwidth = tgaxBase.ChannelBandwidth;
cfgNDP.NumTransmitAntennas = cfgMUMIMO.NumTransmitAntennas;
cfgNDP.NumSpaceTimeStreams = cfgMUMIMO.NumTransmitAntennas;

% Generate NDP packet - with an empty PSDU as no data
txNDP = wlanWaveformGenerator([],cfgNDP);

% For each user STA, pass the NDP packet through the channel and calculate
% the feedback channel state matrix by SVD.
staFeedback = cell(1,numUsers);
for userIdx = 1:numel(tgax)

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-57

 % Received waveform at user STA with 50 sample padding. No noise.
 rx = tgax{userIdx}([txNDP; zeros(50,size(txNDP,2))]);

 % Get the full-band beamforming feedback for a user
 staFeedback{userIdx} = heUserBeamformingFeedback(rx,cfgNDP);
end

Simulation Parameters

Different path losses are simulated in this example. The same path loss and noise floor is applied to
all users. For each path loss simulated, 10 packets are passed through the channel. Packets are
separated by 20 microseconds.

cfgSim = struct;
cfgSim.NumPackets = 10; % Number of packets to simulate for each path loss
cfgSim.Pathloss = (96:3:105); % Path losses to simulate in dB
cfgSim.TransmitPower = 30; % AP transmit power in dBm
cfgSim.NoiseFloor = -89.9; % STA noise floor in dBm
cfgSim.IdleTime = 20; % Idle time between packets in us

Simulation with OFDMA

The scenario is first simulated with the OFDMA configuration and transmit beamforming.

The steering matrix for each RU is calculated using the feedback from the STAs. The
heMUCalculateSteeringMatrix helper function calculates the beamforming matrix for an RU
given the CSI feedback.

% For each RU, calculate the steering matrix to apply
for ruIdx = 1:numel(cfgOFDMA.RU)
 % Calculate the steering matrix to apply to the RU given the feedback
 steeringMatrix = heMUCalculateSteeringMatrix(staFeedback,cfgOFDMA,cfgNDP,ruIdx);

 % Apply the steering matrix to each RU
 cfgOFDMA.RU{ruIdx}.SpatialMapping = 'Custom';
 cfgOFDMA.RU{ruIdx}.SpatialMappingMatrix = steeringMatrix;
end

The heMUSimulateScenario helper function performs the simulation. The pre-HE preamble of
802.11ax is backwards compatible with 802.11ac, therefore in this example the front-end
synchronization components for a VHT waveform are used to synchronize the HE waveform at each
STA. For each packet and path loss simulated the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through an evolving TGax channel model and AWGN is added to the

received waveform. The channel state is maintained between packets.
3 The packet is detected.
4 Coarse carrier frequency offset is estimated and corrected.
5 Fine timing synchronization is established.
6 Fine carrier frequency offset is estimated and corrected.
7 The HE-LTF is extracted from the synchronized received waveform. The HE-LTF is OFDM

demodulated and channel estimation is performed.
8 The HE Data field is extracted from the synchronized received waveform and OFDM

demodulated.

6 End-to-End Simulation

6-58

9 Common pilot phase tracking is performed to track any residual carrier frequency offset.
10 The phase corrected OFDM symbols are equalized with the channel estimate.
11 Noise estimation is performed using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers.
12 The equalized symbols are demodulated and decoded to recover the PSDU.
13 The recovered PSDU is compared to the transmitted PSDU to determine if the packet has been

recovered successfully.

The simulation is run for the OFDMA configuration.

disp('Simulating OFDMA...');
throughputOFDMA = heMUSimulateScenario(cfgOFDMA,tgax,cfgSim);

Simulating OFDMA...
 Pathloss 96.0 dB, AP throughput 66.1 Mbps
 Pathloss 99.0 dB, AP throughput 66.1 Mbps
 Pathloss 102.0 dB, AP throughput 49.6 Mbps
 Pathloss 105.0 dB, AP throughput 16.5 Mbps

Simulation with MU-MIMO

Now the scenario is simulated with the MU-MIMO configuration. The
heMUCalculateSteeringMatrix helper function calculates the beamforming matrix for an RU
given the CSI feedback for all users in the MU-MIMO allocation. A zero forcing solution is used to
calculate the steering matrix within the helper function.

% Calculate the steering matrix to apply to the RU given the feedback
ruIdx = 1; % Index of the one and only RU
steeringMatrix = heMUCalculateSteeringMatrix(staFeedback,cfgMUMIMO,cfgNDP,ruIdx);

% Apply the steering matrix to the RU
cfgMUMIMO.RU{1}.SpatialMapping = 'Custom';
cfgMUMIMO.RU{1}.SpatialMappingMatrix = steeringMatrix;

Run the simulation for the MU-MIMO configuration.

disp('Simulating MU-MIMO...');
throughputMUMIMO = heMUSimulateScenario(cfgMUMIMO,tgax,cfgSim);

Simulating MU-MIMO...
 Pathloss 96.0 dB, AP throughput 110.5 Mbps
 Pathloss 99.0 dB, AP throughput 110.5 Mbps
 Pathloss 102.0 dB, AP throughput 63.5 Mbps
 Pathloss 105.0 dB, AP throughput 0.0 Mbps

Simulation with Combined MU-MIMO and OFDMA

Finally, the scenario is simulated with the combined MU-MIMO and OFDMA configuration.

The steering matrix for each RU is calculated using the feedback from the STAs, including the MU-
MIMO RU. The heMUCalculateSteeringMatrix helper function calculates the beamforming
matrix for an RU given the CSI feedback.

% For each RU calculate the steering matrix to apply
for ruIdx = 1:numel(cfgMixed.RU)
 % Calculate the steering matrix to apply to the RU given the feedback

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-59

 steeringMatrix = heMUCalculateSteeringMatrix(staFeedback,cfgMixed,cfgNDP,ruIdx);

 % Apply the steering matrix to each RU
 cfgMixed.RU{ruIdx}.SpatialMapping = 'Custom';
 cfgMixed.RU{ruIdx}.SpatialMappingMatrix = steeringMatrix;
end

Run the simulation for the combined MU-MIMO and OFDMA configuration.

disp('Simulating Mixed MU-MIMO and OFDMA...');
throughputMixed = heMUSimulateScenario(cfgMixed,tgax,cfgSim);

Simulating Mixed MU-MIMO and OFDMA...
 Pathloss 96.0 dB, AP throughput 66.1 Mbps
 Pathloss 99.0 dB, AP throughput 66.1 Mbps
 Pathloss 102.0 dB, AP throughput 66.1 Mbps
 Pathloss 105.0 dB, AP throughput 47.9 Mbps

Plot Results

The raw AP throughput for each transmission mode is plotted. The results show for this channel
realization at high SNRs (low pathloss) the throughput provided by the MU-MIMO configuration
exceeds OFDMA configuration. The packet duration of the MU-MIMO configuration is roughly half
that of the OFDMA configuration which provides the throughput gain. As the SNR decreases, the
noise dominates and transmit beamforming with OFDMA becomes more effective. The performance
of the combined MU-MIMO and OFDMA configuration follow a similar trend to the OFDMA
configuration as the packet duration is the same. The performance differs due to different RU sizes
and number of space-time streams.

% Sum throughput for all STAs and plot for all configurations
figure;
plot(cfgSim.Pathloss,sum(throughputOFDMA,2),'-x');
hold on;
plot(cfgSim.Pathloss,sum(throughputMUMIMO,2),'-o');
plot(cfgSim.Pathloss,sum(throughputMixed,2),'-s');
grid on;
xlabel('Pathloss (dB)');
ylabel('Throughput (Mbps)');
legend('OFDMA','MU-MIMO','MU-MIMO & OFDMA');
title('Raw AP Throughput');

6 End-to-End Simulation

6-60

Appendix

This example uses these helper functions.

• heEqualizeCombine.m
• heMUCalculateSteeringMatrix.m
• heMUSimulateScenario.m
• heNoiseEstimate.m
• heUserBeamformingFeedback.m

Selected Bibliography

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

See Also
Functions
awgn

 802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation

6-61

802.11ax Packet Error Rate Simulation for Uplink Trigger-
Based Format

This example shows how to measure the packet error rate of an IEEE® 802.11ax™ high efficiency
(HE) uplink, trigger-based (TB) format.

Introduction

The 802.11ax [1] HE trigger-based (HE TB) format allows for OFDMA or MU-MIMO transmission in
the uplink. An HE TB transmission is controlled entirely by an access point (AP). All the parameters
required for the transmission are provided in a trigger frame to all STAs participating in the HE TB
transmission. Each station (STA) transmits an HE TB packet simultaneously, when triggered by the
AP as shown in the following diagram.

In this example an end-to-end simulation is used to determine the packet error rate of an HE TB link
for four STAs in a MU-MIMO configuration. At each SNR point multiple packets are transmitted with
no impairments apart from channel and noise. The received packets are demodulated and the PSDUs
recovered for each STA. The PSDUs are compared to those transmitted to determine the number of
packet errors and hence the packet error rate for all users. Packet detection, timing synchronization
and symbol equalization is performed by the receiver. No frequency offset correction is performed in
this example. The processing of HE TB processing chain is shown in the following diagram.

6 End-to-End Simulation

6-62

The receiver performs a minimum-mean-square-error-based ordered successive interference
cancellation (MMSE-SIC) process for data equalization [2]. To avoid error propagation in the
cancellation stage, data streams for all STAs are sorted in descending order based on the channel
state information and equalized sequentially. This diagram shows the procedure of MMSE-SIC
equalization.

Equalization Method

In this example, you can specify the equalization method as 'mmse' or 'mmse-sic'. The default
equalizer is 'mmse-sic'.

equalizationMethod = 'mmse-sic';

User Configuration

In this example the allocation information and transmit parameters for multiple uplink STAs are
configured using an heTBSystemConfig object.

allocationIndex = 195; % Four uplink users in a MU-MIMO configuration
cfgSys = heTBSystemConfig(allocationIndex);

In a trigger-based transmission some parameters are the same for all uplink users, while some can
differ. The User property of cfgSys contains a cell array of user configurations. Each element of the
cell array is an object which can be configured to set the parameters of individual users. In this
example, all users have the same transmission parameters.

% These parameters are same for all users in the MU-MIMO system
cfgSys.HELTFType = 4; % HE-LTF compression mode
cfgSys.GuardInterval = 3.2; % Guard interval type
cfgSys.SingleStreamPilots = 1; % Single stream pilot transmission of HE-LTF
numRx = 8; % Number of receive(AP) antennas

% The individual parameters for each user are specified below
allocInfo = ruInfo(cfgSys);
numUsers = allocInfo.NumUsers; % Number of uplink users

for userIdx = 1:numUsers
 cfgSys.User{userIdx}.NumTransmitAntennas = 1;
 cfgSys.User{userIdx}.NumSpaceTimeStreams = 1;

 802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format

6-63

 cfgSys.User{userIdx}.SpatialMapping = 'Direct';
 cfgSys.User{userIdx}.MCS = 7;
 cfgSys.User{userIdx}.APEPLength = 1e3;
 cfgSys.User{userIdx}.ChannelCoding = 'LDPC';
end

A trigger-based transmission for a single user within the system is configured with an
wlanHETBConfig object. The transmission configurations for all users are generated using the
method getUserConfig. A cell array of four HE TB objects is created to describe the transmission of
four users.

cfgTB = getUserConfig(cfgSys);

Simulation Parameters

For each SNR point (dB) in the snr vector a number of packets are generated, passed through a
channel and demodulated to determine the packet error rate.

snr = 20:2:24;

% The sample rate and field indices for the HE TB packet is same for all
% users. Here the trigger configuration of the first user is used to get
% the sample rate and field indices of the HE TB PPDU.
fs = wlanSampleRate(cfgTB{1}); % Same for all users
ind = wlanFieldIndices(cfgTB{1}); % Same for all users

Channel Configuration

In this example, a TGax NLOS indoor channel model is used with delay profile Model-B. Model-B is
considered NLOS when the distance between the transmitter and receiver is greater than or equal to
5 meters. This is described further in wlanTGaxChannel. In this example all the STAs are assumed
to be at the same distance from the AP.

tgaxBase = wlanTGaxChannel;
tgaxBase.SampleRate = fs;
tgaxBase.TransmissionDirection = 'Uplink';
tgaxBase.TransmitReceiveDistance = 10;
chanBW = cfgSys.ChannelBandwidth;
tgaxBase.ChannelBandwidth = chanBW;
tgaxBase.NumReceiveAntennas = numRx;
tgaxBase.NormalizeChannelOutputs = false;

An individual channel is created for each of the four users. Each channel is a clone of tgaxBase, but
with a different UserIndex property, and is stored in a cell array tgax. The UserIndex property of
each individual channel is set to provide a unique channel for each user. In this example a random
channel realization is used for each packet by randomly varying the UserIndex property for each
transmitted packet.

% A cell array stores the channel objects, one per user
tgax = cell(1,numUsers);
for userIdx = 1:numUsers
 tgax{userIdx} = clone(tgaxBase);
 tgax{userIdx}.NumTransmitAntennas = cfgSys.User{userIdx}.NumTransmitAntennas;
 tgax{userIdx}.UserIndex = userIdx;
end

6 End-to-End Simulation

6-64

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate is calculated. The pre-
HE preamble of 802.11ax is backwards compatible with 802.11ac™, therefore in this example the
timing synchronization components for a VHT waveform are used to synchronize the HE waveform at
the receiver. For each user, the following processing steps occur to create a waveform at the receiver
containing all four users:

1 To create an HE TB waveform, a PSDU is created and encoded for each user based on predefined
user parameters.

2 The waveform for each user is passed through an indoor TGax channel model. Different channel
realizations are modeled for different users and packets, by randomly varying the UserIndex
property of the channel. This results in same spatial correlation properties for all users.

3 The waveforms for all HE TB users are scaled and combined to ensure same SNR for each user
after the addition of noise.

4 AWGN is added to the received waveform to create the desired average SNR per active
subcarrier after OFDM demodulation.

At the receiver (AP) the following processing steps occur:

1 The packet is detected.
2 Fine timing synchronization is established. The L-STF, L-LTF and L-SIG samples are provided for

fine timing to allow for packet detection at the start or end of the L-STF.
3 The HE-LTF and HE-Data fields for all users are extracted from the synchronized received

waveform. The HE-LTF and HE-Data fields are OFDM demodulated.
4 The demodulated HE-LTF is extracted for each RU and channel estimation is performed.
5 Noise estimation is performed using the demodulated data field pilots for each RU.
6 The data field is extracted and equalized for all users within an RU, from the demodulated data

field.
7 For each RU, and user within the RU, the spatial streams for a user are demodulated and

decoded to recover the transmitted PSDU.

A parfor loop can be used to parallelize processing of the SNR points. To enable the use of parallel
computing for increased speed comment out the 'for' statement and uncomment the 'parfor'
statement below.

ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgSys.ChannelBandwidth,cfgSys.GuardInterval);
numSNR = numel(snr); % Number of SNR points
numPackets = 50; % Number of packets to simulate
packetErrorRate = zeros(numUsers,numSNR);
txPSDU = cell(numUsers);

% parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
for isnr = 1:numSNR
 % Create HE TB object for receiver processing
 cfgHETB = wlanHETBConfig;
 cfgHETB.ChannelBandwidth = cfgSys.ChannelBandwidth;
 cfgHETB.HELTFType = cfgSys.HELTFType;
 cfgHETB.SingleStreamPilots = cfgSys.SingleStreamPilots;

 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers

 802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format

6-65

 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % RU allocation information
 sysInfo = ruInfo(cfgSys);

 % Simulate multiple packets
 numPacketErrors = zeros(numUsers,1);
 for pktIdx = 1:numPackets

 % Transmit processing
 rxWaveform = 0;
 packetError = zeros(numUsers,1);
 txPSDU = cell(1,numUsers);

 % Generate random channel realization for each packet by varying
 % the UserIndex property of the channel. This assumes all users
 % have the same number of transmit antennas.
 chPermutations = randperm(numUsers);
 for userIdx = 1:numUsers
 % HE TB config object for each user
 cfgUser = cfgTB{userIdx};

 % Generate a packet with random PSDU
 txPSDU{userIdx} = randi([0 1],getPSDULength(cfgUser)*8,1,'int8');

 % Generate HE TB waveform, containing payload for single user
 txTrig = wlanWaveformGenerator(txPSDU{userIdx},cfgUser);

 % Pass waveform through a random TGax Channel
 channelIdx = chPermutations(userIdx);
 reset(tgax{channelIdx}); % New channel realization
 rxTrig = tgax{channelIdx}([txTrig; zeros(15,size(txTrig,2))]);

 % Scale the transmit power of the user within an RU. This is to
 % ensure same SNR for each user after the addition of noise.
 ruNum = cfgSys.User{userIdx}.RUNumber;
 SF = sqrt(1/sysInfo.NumUsersPerRU(ruNum))*sqrt(cfgUser.RUSize/(sum(sysInfo.RUSizes)));

 % Combine uplink users into one waveform
 rxWaveform = rxWaveform+SF*rxTrig;
 end

 % Pass the waveform through AWGN channel. Account for noise
 % energy in nulls so the SNR is defined per active subcarriers.
 packetSNR = snr(isnr)-10*log10(ofdmInfo.FFTLength/sum(sysInfo.RUSizes));
 rxWaveform = awgn(rxWaveform,packetSNR);

 % Receive processing
 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rxWaveform,chanBW,0,0.05);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;
 continue; % Go to next loop iteration
 end

 % Extract the non-HT fields and determine fine packet offset

6 End-to-End Simulation

6-66

 nonhtfields = rxWaveform(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,chanBW);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected out with the range of expected delays from
 % the channel modeling; packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 continue; % Go to next loop iteration
 end

 % Extract HE-LTF and HE-Data fields for all RUs
 rxLTF = rxWaveform(pktOffset+(ind.HELTF(1):ind.HELTF(2)),:);
 rxData = rxWaveform(pktOffset+(ind.HEData(1):ind.HEData(2)),:);

 for ruIdx = 1:allocInfo.NumRUs
 % Demodulate HE-LTF and HE-Data field for the RU of interest
 ru = [allocInfo.RUSizes(ruIdx) allocInfo.RUIndices(ruIdx)];
 demodHELTFRU = wlanHEDemodulate(rxLTF,'HE-LTF',chanBW,cfgSys.GuardInterval,cfgSys.HELTFType,ru);
 demodHEDataRU = wlanHEDemodulate(rxData,'HE-Data',chanBW,cfgSys.GuardInterval,ru);

 % Configure the relevant properties in HE TB object
 cfgHETB.RUSize = allocInfo.RUSizes(ruIdx);
 cfgHETB.RUIndex = allocInfo.RUIndices(ruIdx);
 cfgHETB.NumSpaceTimeStreams = allocInfo.NumSpaceTimeStreamsPerRU(ruIdx);

 % Channel estimate
 [chanEst,ssPilotEst] = wlanHELTFChannelEstimate(demodHELTFRU,cfgHETB);

 % Get indices of data and pilots within RU (without nulls)
 ruOFDMInfo = wlanHEOFDMInfo('HE-Data',cfgSys.ChannelBandwidth,cfgSys.GuardInterval, ...
 [allocInfo.RUSizes(ruIdx) allocInfo.RUIndices(ruIdx)]);

 % Estimate noise power in HE fields of each user
 nVarEst = heNoiseEstimate(demodHEDataRU(ruOFDMInfo.PilotIndices,:,:),ssPilotEst,cfgSys,ruIdx);

 % Discard pilot subcarriers
 demodDataSym = demodHEDataRU(ruOFDMInfo.DataIndices,:,:);
 chanEstData = chanEst(ruOFDMInfo.DataIndices,:,:);

 % Equalize
 if strcmpi(equalizationMethod,'mmse-sic')
 [eqSym,csi] = heSuccessiveEqualize(demodDataSym,chanEstData,nVarEst,cfgSys,ruIdx);
 else
 [eqSym,csi] = heEqualizeCombine(demodDataSym,chanEstData,nVarEst,cfgSys);
 end

 for userIdx = 1:allocInfo.NumUsersPerRU(ruIdx)
 % Get TB config object for each user
 userNum = cfgSys.RU{ruIdx}.UserNumbers(userIdx);
 cfgUser = cfgTB{userNum};

 % Get space-time stream indices for the current user
 stsIdx = cfgUser.StartingSpaceTimeStream-1+(1:cfgUser.NumSpaceTimeStreams);

 % Demap and decode bits

 802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format

6-67

 rxPSDU = wlanHEDataBitRecover(eqSym(:,:,stsIdx),nVarEst,csi(:,stsIdx),cfgUser,'LDPCDecodingMethod','norm-min-sum');

 % PER calculation
 packetError(userNum) = any(biterr(txPSDU{userNum},rxPSDU));
 end
 end
 numPacketErrors = numPacketErrors+packetError;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(:,isnr)= numPacketErrors/numPackets;
 disp(['SNR ' num2str(snr(isnr)) ...
 ' completed for ' num2str(numUsers) ' users']);

end

SNR 20 completed for 4 users
SNR 22 completed for 4 users
SNR 24 completed for 4 users

Plot Packet Error Rate vs SNR

markers = 'ox*sd^v><ph+ox*sd^v';
color = 'bmcrgbrkymcrgbrkymc';
figure;

for nSTA = 1:numUsers
 semilogy(snr,packetErrorRate(nSTA,:).',['-' markers(nSTA) color(nSTA)]);
 hold on;
end

grid on;
xlabel('SNR (dB)');
ylabel('PER');
dataStr = arrayfun(@(x)sprintf('STA- %d',x),1:numUsers,'UniformOutput',false);
legend(dataStr);
title('PER for uplink 802.11ax link');

6 End-to-End Simulation

6-68

The number of packets tested at each SNR point is controlled by numPackets. For meaningful
results, this value should be larger than those presented in this example. The figure below was
created by running a longer simulation with numPackets:1e4 and snr:20:2:28, which shows the
packet error rate of both MMSE equalizer and MMSE-SIC equalizer.

 802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format

6-69

Appendix

This example uses the following helper functions and objects:

• heEqualizeCombine.m
• heNoiseEstimate.m
• heSuccessiveEqualize.m
• heTBRU.m
• heTBSystemConfig.m
• heTBUser.m

Selected Bibliography

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

2 M. Debbah, B. Muquet, M. de Courville, M. Muck, S. Simoens, and P. Loubaton. A MMSE
successive interference cancellation scheme for a new adjustable hybrid spread OFDM system.
IEEE 51st Vehicular Technology Conference Proceedings, pp. 745-749, vol. 2, 2000.

6 End-to-End Simulation

6-70

802.11ax Compressed Beamforming Packet Error Rate
Simulation

This example shows how to measure the packet error rate of a beamformed IEEE® 802.11ax™ high
efficiency single user (HE SU) format link with different beamforming feedback quantization levels.

Introduction

Transmit beamforming focuses energy towards a receiver to improve the SNR of a link. In this
scheme, the transmitter is called a beamformer and the receiver is called a beamformee. A steering
matrix is used by the beamformer to direct the energy to the beamformee. The steering matrix is
calculated using channel state information obtained through channel measurements. These
measurements are obtained by sounding the channel between beamformer and beamformee. To
sound the channel, the beamformer sends a null data packet (NDP) to the beamformee. The
beamformee measures the channel information during sounding to calculate a feedback matrix. This
matrix is compressed in the form of quantized angles (phi and psi) and fed back to the beamformer.
The beamformer can then calculate the feedback matrix from the quantized angles to create a
steering matrix and beamform transmissions to the beamformee. The process of forming steering
matrix is shown in “802.11ac Transmit Beamforming” on page 3-26.

This example measures the packet error rate (PER) for an 802.11ax [1] single-user (SU) link
comprising a 4x2 MIMO configuration between a transmitter and receiver with two space-time
streams. The link utilizes compressed beamforming feedback quantization for different quantization
levels and a selection of SNR points. This example does not consider grouping of subcarriers (see
Section 9.4.1.65 in [1]).

Waveform Configuration

An HE SU packet is a full-band transmission to a single user. Configure transmit parameters for the
HE SU format using a wlanHESUConfig object. Configure the object for a 20 MHz channel
bandwidth, four transmit antennas, two space-time streams, 16-QAM rate-1/2 (MCS 3), and 4x HE-

 802.11ax Compressed Beamforming Packet Error Rate Simulation

6-71

LTF compression mode. This example does not model subcarrier beamforming smoothing. To sound
all subcarriers and estimate the channel without interpolation for this transmission configuration, use
4x HE-LTF compression mode.

NumTxAnts = 4; % Number of transmit antennas
NumSTS = 2; % Number of space-time streams
NumRxAnts = 2; % Number of receive antennas
cfgHEBase = wlanHESUConfig;
cfgHEBase.ChannelBandwidth = 'CBW20'; % Channel bandwidth
cfgHEBase.NumSpaceTimeStreams = NumSTS; % Number of space-time streams
cfgHEBase.NumTransmitAntennas = NumTxAnts; % Number of transmit antennas
cfgHEBase.APEPLength = 1e3; % Payload length in bytes
cfgHEBase.ExtendedRange = false; % Do not use extended range format
cfgHEBase.Upper106ToneRU = false; % Do not use upper 106 tone RU
cfgHEBase.PreHESpatialMapping = false; % Spatial mapping of pre-HE fields
cfgHEBase.GuardInterval = 3.2; % Guard interval duration
cfgHEBase.HELTFType = 4; % HE-LTF compression mode
cfgHEBase.ChannelCoding = 'LDPC'; % Channel coding
cfgHEBase.MCS = 3; % Modulation and coding scheme
cfgHEBase.SpatialMapping = 'Custom'; % Custom for beamforming

Null Data Packet (NDP) Configuration

Configure the NDP transmission to have data length of zero. Since the NDP is used to obtain the
channel state information, set the number of space-time streams equal to the number of transmit
antennas and directly map each space-time stream to a transmit antenna.

cfgNDP = cfgHEBase;
cfgNDP.APEPLength = 0; % NDP has no data
cfgNDP.NumSpaceTimeStreams = NumTxAnts; % For feedback matrix calculation
cfgNDP.SpatialMapping = 'Direct'; % Each TxAnt carries a STS

Channel Configuration

This example uses a TGax NLOS indoor channel model with delay profile Model-B. The Model-B
profile is considered NLOS when the distance between transmitter and receiver is greater than or
equal to five meters. For more information, see wlanTGaxChannel.

% Create and configure the TGax channel
chanBW = cfgHEBase.ChannelBandwidth;
tgaxChannel = wlanTGaxChannel;
tgaxChannel.DelayProfile = 'Model-B';
tgaxChannel.NumTransmitAntennas = NumTxAnts;
tgaxChannel.NumReceiveAntennas = NumRxAnts;
tgaxChannel.TransmitReceiveDistance = 5; % Distance in meters for NLOS
tgaxChannel.ChannelBandwidth = chanBW;
tgaxChannel.LargeScaleFadingEffect = 'None';
tgaxChannel.NormalizeChannelOutputs = false;
fs = wlanSampleRate(cfgHEBase);
tgaxChannel.SampleRate = fs;

Simulation Parameters

This example compares the performance of beamforming with two different resolutions of
compression quantization, and without compression. For each quantization resolution, perform an
end-to-end simulation with various SNR values to determine the PER. 802.11ax specifies only two
sets of quantization resolution for single user beamforming (Table 9-29a in [1]). Set the value of

6 End-to-End Simulation

6-72

codeBookSize to slect the number of bits used to quantize the beamforming feedback angles (phi
and psi) in this simulation. To disable compression set codeBookSize to Inf. This table shows the
quantization levels for each value of codeBookSize:

codeBookSize Compression Configuration
--
 0 NumBitsphi = 4; NumBitspsi = 2
 1 NumBitsphi = 6; NumBitspsi = 4
 Inf No compression
--

codeBookSize = [0 1 Inf];

Set the SNRs to simulate in dB.

snr = 10:2:18;

Limit the number of packets tested at each SNR point to maxNumErrors or maxNumPackets, where:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example lead to a very short simulation. For statistically meaningful
results, increase these numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % The maximum number of packets at an SNR point

Processing SNR Points

For each SNR point, test packets and calculate the PER. For each packet, perform these steps.

Obtain the steering matrix to create a feedback matrix:

1 Transmit an NDP waveform through an indoor TGax channel model. Model different channel
realizations for different packets.

2 Add AWGN to the received waveform to create the desired average SNR per active subcarrier
after OFDM demodulation.

3 Detect the packet at the beamformee.
4 Estimate and correct for coarse carrier frequency offset (CFO).
5 Establish fine timing synchronization.
6 Estimate and correct for fine CFO.
7 Extract the HE-LTF from the synchronized received waveform. OFDM demodulate the HE-LTF

and perform channel estimation.
8 Perform singular value decomposition on the estimated channel and calculate the beamforming

feedback matrix, V.
9 Compress and quantize the feedback matrix, V, to create a set of angles as specified in the

standard.

Transmit a data packet using the recovered steering matrix and decode the beamformed data
transmission to recover the PSDU:

 802.11ax Compressed Beamforming Packet Error Rate Simulation

6-73

1 If modeling compression, convert the quantized angles back to the beamforming feedback
matrix, V. Otherwise, use the V matrix calculated by the beamformee. Assume no beamforming
feedback delay.

2 Create and encode a PSDU to create a single-packet waveform with the steering matrix set to the
beamforming feedback matrix, V.

3 Pass the waveform through the same indoor TGax channel realization as the NDP transmission.
4 Add AWGN to the received waveform.
5 As with NDP, perform synchronization and HE channel estimation.
6 Extract the data field from the synchronized received waveform and OFDM demodulate.
7 Perform common phase error pilot tracking to track any residual carrier frequency offset.
8 Estimate the noise power using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers.
9 Equalize the phase corrected OFDM symbols with the channel estimate.
10 Demodulate and decode the equalized symbols to recover the PSDU.

To parallelize processing of SNR points, you can use a parfor loop. To enable the use of parallel
computing for increased speed comment out the 'for' statement and uncomment the 'parfor'
statement below.

numQuant = numel(codeBookSize);
numSNR = numel(snr); % Number of SNR points
packetErrorRate = zeros(numQuant,numSNR);

% Get occupied subcarrier indices and OFDM parameters
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgHEBase);

% Indices to extract fields from the PPDU
ind = wlanFieldIndices(cfgHEBase);
indSound = wlanFieldIndices(cfgNDP);

for ibf = 1:numQuant
 switch codeBookSize(ibf) % See P802.11ax/D4.1 Section 9.4.1.64
 case 0
 NumBitsPsi = 2; % Number of bits for psi
 NumBitsPhi = 4; % Number of bits for phi
 disp('End-to-End simulation with compressed beamforming quantization with');
 disp(['Number of Bits for phi = ' num2str(NumBitsPhi) ...
 ' and Number of Bits for psi = ' num2str(NumBitsPsi)]);
 case 1
 NumBitsPsi = 4; % Number of bits for psi
 NumBitsPhi = 6; % Number of bits for phi
 disp('End-to-End simulation with compressed beamforming quantization with');
 disp(['Number of Bits for phi = ' num2str(NumBitsPhi) ...
 ' and Number of Bits for psi = ' num2str(NumBitsPsi)]);
 otherwise
 disp('End-to-End simulation with non-compressed beamforming');
 end

 %parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
 for isnr = 1:numSNR
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',100);

6 End-to-End Simulation

6-74

 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Account for noise energy in nulls so the SNR is defined per
 % active subcarrier
 packetSNR = snr(isnr)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Create an instance of the HE configuration object per SNR point
 % simulated. This will enable to use parfor
 cfgHE = cfgHEBase;

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Null data packet transmission
 tx = wlanWaveformGenerator([],cfgNDP);

 % Add trailing zeros to allow for channel delay
 txPad = [tx; zeros(50,cfgNDP.NumTransmitAntennas)];

 % Pass through a fading indoor TGax channel
 reset(tgaxChannel); % Reset channel for different realization
 rx = tgaxChannel(txPad);

 % Pass the waveform through AWGN channel
 rx = awgn(rx,packetSNR);

 % Calculate the steering matrix at the beamformee
 V = heUserBeamformingFeedback(rx,cfgNDP,true);

 if isempty(V)
 % User feedback failed, packet error
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 if ~isinf(codeBookSize(ibf))
 % Find quantized angles of the beamforming feedback matrix
 angidx = bfCompressQuantize(V(:,1:NumSTS,:),NumBitsPhi,NumBitsPsi);

 % Calculate steering matrix from the quantized angles at
 % beamformer:
 % Assuming zero delay in transmitting the quantized angles
 % from beamformee to beamformer, the steering matrix is
 % calculated from the quantized angles and is used in the
 % data transmission of beamformer.

 [~,Nc,Nr] = size(V(1,1:NumSTS,:));
 V = bfDecompress(angidx,Nr,Nc,NumBitsPhi,NumBitsPsi);
 end

 steeringMat = V(:,1:NumSTS,:);

 % Beamformed data transmission
 psduLength = getPSDULength(cfgHE); % PSDU length in bytes
 txPSDU = randi([0 1],psduLength*8,1); % Generate random PSDU

 802.11ax Compressed Beamforming Packet Error Rate Simulation

6-75

 cfgHE.SpatialMappingMatrix = steeringMat;
 tx = wlanWaveformGenerator(txPSDU,cfgHE);

 % Add trailing zeros to allow for channel delay
 txPad = [tx; zeros(50,cfgHE.NumTransmitAntennas)];

 % Pass through a fading indoor TGax channel
 rx = tgaxChannel(txPad);

 % Pass the waveform through AWGN channel
 rx = awgn(rx,packetSNR);

 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,chanBW);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction
 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,chanBW);
 rx = frequencyOffset(rx,fs,-coarseFreqOff);

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,chanBW);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;

 % If packet detected outwith the range of expected delays from
 % the channel modeling; packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 rxLLTF = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(rxLLTF,chanBW);
 rx = frequencyOffset(rx,fs,-fineFreqOff);

 % HE-LTF demodulation and channel estimation
 rxHELTF = rx(pktOffset+(ind.HELTF(1):ind.HELTF(2)),:);
 heltfDemod = wlanHEDemodulate(rxHELTF,'HE-LTF',cfgHE);
 [chanEst,pilotEst] = wlanHELTFChannelEstimate(heltfDemod,cfgHE);

 % Data demodulate
 rxData = rx(pktOffset+(ind.HEData(1):ind.HEData(2)),:);
 demodSym = wlanHEDemodulate(rxData,'HE-Data',cfgHE);

 % Pilot phase tracking
 % Average single-stream pilot estimates over symbols (2nd dimension)
 pilotEstTrack = mean(pilotEst,2);
 demodSym = wlanHETrackPilotError(demodSym,pilotEstTrack,cfgHE,'HE-Data');

6 End-to-End Simulation

6-76

 % Estimate noise power in HE fields
 nVarEst = heNoiseEstimate(demodSym(ofdmInfo.PilotIndices,:,:),pilotEstTrack,cfgHE);

 % Extract data subcarriers from demodulated symbols and channel
 % estimate
 demodDataSym = demodSym(ofdmInfo.DataIndices,:,:);
 chanEstData = chanEst(ofdmInfo.DataIndices,:,:);

 % Equalization and STBC combining
 [eqDataSym,csi] = heEqualizeCombine(demodDataSym,chanEstData,nVarEst,cfgHE);

 % Recover data
 rxPSDU = wlanHEDataBitRecover(eqDataSym,nVarEst,csi,cfgHE,'LDPCDecodingMethod','norm-min-sum');

 % Determine if any bits are in error, i.e. a packet error
 packetError = ~isequal(txPSDU,rxPSDU);
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(ibf,isnr) = numPacketErrors/(numPkt-1);
 disp(['MCS ' num2str(cfgHE.MCS) ','...
 ' SNR ' num2str(snr(isnr)) ...
 ' completed after ' num2str(numPkt-1) ' packets,'...
 ' PER:' num2str(packetErrorRate(ibf,isnr))]);
 end
 disp(newline);
end

End-to-End simulation with compressed beamforming quantization with
Number of Bits for phi = 4 and Number of Bits for psi = 2
MCS 3, SNR 10 completed after 13 packets, PER:0.84615
MCS 3, SNR 12 completed after 44 packets, PER:0.25
MCS 3, SNR 14 completed after 91 packets, PER:0.12088
MCS 3, SNR 16 completed after 100 packets, PER:0.05
MCS 3, SNR 18 completed after 100 packets, PER:0

End-to-End simulation with compressed beamforming quantization with
Number of Bits for phi = 6 and Number of Bits for psi = 4
MCS 3, SNR 10 completed after 15 packets, PER:0.73333
MCS 3, SNR 12 completed after 46 packets, PER:0.23913
MCS 3, SNR 14 completed after 100 packets, PER:0.1
MCS 3, SNR 16 completed after 100 packets, PER:0.05
MCS 3, SNR 18 completed after 100 packets, PER:0

End-to-End simulation with non-compressed beamforming
MCS 3, SNR 10 completed after 15 packets, PER:0.73333
MCS 3, SNR 12 completed after 46 packets, PER:0.23913
MCS 3, SNR 14 completed after 92 packets, PER:0.11957
MCS 3, SNR 16 completed after 100 packets, PER:0.04
MCS 3, SNR 18 completed after 100 packets, PER:0

 802.11ax Compressed Beamforming Packet Error Rate Simulation

6-77

Plot Packet Error Rate vs Signal to Noise Ratio

figure;
lineTypes = ["k-o" "b-s" "r-*"];
semilogy(snr,packetErrorRate(1,:),lineTypes(1));
hold on;
grid on;
xlabel('SNR (dB)');
ylabel('PER');
for ibf = 2:numQuant
 semilogy(snr,packetErrorRate(ibf,:),lineTypes(ibf));
end
dataStr = [string(['Compressed Beamforming, ' newline ...
 'NumBitsPhi = 4, NumBitsPsi = 2' newline])...
 string(['Compressed Beamforming, ' newline ...
 'NumBitsPhi = 6, NumBitsPsi = 4' newline]) ...
 "Non-Compressed Beamforming"];
legend(dataStr);
title(sprintf('802.11ax Beamforming PER for Channel %s, %s, %s',tgaxChannel.DelayProfile,cfgHEBase.ChannelBandwidth,cfgHEBase.ChannelCoding));

The number of packets tested at each SNR point is controlled by two parameters: maxNumErrors
and maxNumPackets. For meaningful results, increase the values used in this example. The figure
below was created by running a longer simulation with maxNumErrors:1e3 and
maxNumPackets:1e4.

6 End-to-End Simulation

6-78

Further Exploration

Using 4x HE-LTF compression mode for NDP and data packet transmissions allows all subcarriers to
be sounded and the channel to be estimated. When 2x HE-LTF compression mode is used linear
interpolation is performed during channel estimation. This example does not perform subcarrier
beamforming smoothing. Therefore, if you configure the simulation to use 2x HE-LTF compression,
the interpolation performed during channel estimation will not correctly estimate the beamforming
matrix for all subcarriers and the PER will increase.

Selected Bibliography

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

 802.11ax Compressed Beamforming Packet Error Rate Simulation

6-79

802.11ax Feedback Status Misdetection Simulation for Uplink
Trigger-Based Feedback NDP

This example shows how to measure the probability of misdetecting feedback status information in an
uplink high efficiency (HE) trigger-based (TB) feedback null data packet (NDP) transmission from
multiple uplink stations (STAs).

Introduction

The 802.11ax [1 on page 6-86] HE TB feedback NDP is a variant of the HE TB physical layer
protocol data unit (PPDU). The HE TB feedback NDP transmission is controlled entirely by an access
point (AP). All the parameters required for the transmission are provided in a trigger frame of type
NDP feedback report poll (NFRP) sent to all STAs participating in the HE TB feedback transmission.
Following the transmission of an NFRP trigger frame from the AP, multiple STAs may simultaneously
transmit an HE TB feedback NDP, which carries the resource request information (feedback status)
as shown in this diagram. For more information on the NDP feedback report procedure, see the NDP
Feedback Report Procedure section of the wlanHETBConfig reference page.

This example measures the probability of misdetecting feedback status information for an HE TB
feedback NDP by comparing the transmitted and received feedback statuses. A misdetection is
recorded when the recovered feedback status is incorrect or undetermined. The example performs
this measurement for a transmission between four STAs and an AP by using an end-to-end simulation.
The STA infers the transmission parameters from the User Info field of the soliciting NFRP trigger
frame. At each signal-to-noise ratio (SNR) point the STA transmits multiple packets with no

6 End-to-End Simulation

6-80

impairments apart from multipath fading and noise. The STA demodulates the packet and recovers
the feedback status. The AP determines the probability of misdetecting feedback status by comparing
the recovered and transmitted feedback status.

Each STA transmits a waveform by performing these processing steps.

1 Determine if the STA is scheduled to transmit an HE TB feedback NDP.
2 Determine the RU tone set index and starting space time stream number for all transmitting

STAs.
3 Generate an HE TB feedback NDP for the STAs.
4 Pass the waveform for each STA through an indoor channel by using the wlanTGaxChannel

System object (TM) . Model different channel realizations for each user and each packet by
randomly varying the UserIndex property of wlanTGaxChannel. This process results in the same
spatial correlation properties for all STAs.

5 Combine waveforms from all STAs.
6 Add additive white Gaussian noise (AWGN) to the received waveform. The AWGN creates the

desired average SNR per subcarrier after orthogonal frequency-division multiplexing (OFDM)
demodulation for each STA.

The receiver (AP) performs these processing steps on the received waveform.

1 Use perfect channel delay estimate to synchronize.
2 Extract the HE-LTF from the synchronized waveform and demodulate the HE-LTF.
3 Recover feedback status information from the demodulated HE-LTF symbols [2 on page 6-86].

This figure shows the processing for each link between the STA and AP.

Simulate Uplink Transmission

This section simulates an end-to-end uplink scenario for multiple STAs and SNR points. Specify the
number of STAs and the SNR range. This section estimates the probability of misdetecting feedback
status for all STAs. The feedback status represents the resource request information from the STA
and is defined in Table 26-3 of [1 on page 6-86].

 802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-Based Feedback NDP

6-81

% Set transmission parameters

numSTAs = ; % Number of uplink STAs

STAID = ; % STA association ID, assigned to each associated STA with an AP

multiplexingFlag = ; % Signaled in the trigger frame of type NFRP for each STA

feedbackStatus = ; % Resource request information signaled by each STA

startingAID = ; % Signaled in the trigger frame of type NFRP

% Set simulation parameters

numPackets = ; % Number of packets to simulate

snrRange = ; % SNR points (dB)

chanBW = ; % Channel bandwidth

numTx = ; % Assume same number of transmit antennas for all STAs

numRx = ; % Number of receive (AP) antennas

HE TB Feedback NDP Waveform Configuration

Configure the waveform generator for each STA. The STA performs these steps.

• Check if the STA is scheduled to transmit.
• Calculate the RUToneSetIndex for each STA from STAID, startingAID, and chanBW.
• Calculate starting space time stream number for all STAs from STAID, startingAID, and

chanBW.
• Generate configuration object for all STAs.

% Return the index of the transmitting STAs. Calculate RUToneSetIndex and starting space time stream for all STAs.
[txSTAIndex,ruToneSetIndexPerSTA,startingSTSNumPerSTA] = heTBNDPMappingParams(chanBW,numSTAs,multiplexingFlag,startingAID,STAID);
numTxSTAs = numel(txSTAIndex); % STAs scheduled to transmit
cfgSTA = cell(1,numTxSTAs);

% Generate the configuration object and set the feedback status property for all STAs
cfgBase = wlanHETBConfig('ChannelBandwidth',chanBW,'NumTransmitAntennas',numTx,'SpatialMapping','Fourier');
cfgNDP = getNDPFeedbackConfiguration(cfgBase);
if numSTAs~=numel(feedbackStatus)
 error('The number of elements in FeedbackStatus must be equal to the number of STAs');
end

for u=1:numTxSTAs
 cfgNDP.RUToneSetIndex = ruToneSetIndexPerSTA(u);
 cfgNDP.StartingSpaceTimeStream = startingSTSNumPerSTA(u);
 cfgNDP.FeedbackStatus = feedbackStatus(txSTAIndex(u));
 cfgSTA{u} = cfgNDP;
end

Channel Configuration

This example uses a TGax non-line-of-sight (NLOS) indoor channel model with delay profile Model-D.
Model-D is considered NLOS when the distance between the transmitter and receiver is greater than

6 End-to-End Simulation

6-82

or equal to ten meters. For more information, see wlanTGaxChannel. This example assumes that all
STAs are at the same distance from the AP.

delayProfile = ; % TGax channel multipath delay profile
tgaxBase = wlanTGaxChannel;
tgaxBase.DelayProfile = delayProfile;
tgaxBase.SampleRate = wlanSampleRate(cfgSTA{1});
tgaxBase.TransmissionDirection = 'Uplink';
tgaxBase.TransmitReceiveDistance = 10;
tgaxBase.ChannelBandwidth = chanBW;
tgaxBase.NumReceiveAntennas = numRx;
tgaxBase.NormalizeChannelOutputs = false;
tgaxBase.PathGainsOutputPort = true;

Create an individual channel for each STA. Each channel is a clone of tgaxBase, but with a different
UserIndex property, and is stored in cell array tgax. The UserIndex property of each individual
channel creates a unique channel for each user. This example uses a random channel realization for
each packet by randomly varying the UserIndex property of each transmitted packet.

% A cell array stores the channel objects, one per STA.
tgax = cell(1,numTxSTAs);
for u=1:numTxSTAs
 tgax{u} = clone(tgaxBase);
 tgax{u}.NumTransmitAntennas = numTx;
 tgax{u}.UserIndex = u;
end
chInfo = info(tgaxBase);
chFilterCoefficients = chInfo.ChannelFilterCoefficients; % Channel filter coefficients

Processing SNR Points

This section tests a number of packets at each SNR point and calculates the probability of
misdetecting recovered feedback status.

To parallelize processing of the SNR points, you can use a parfor loop. To enable the use of parallel
computing for increased speed comment out the 'for' statement and uncomment the 'parfor'
statement below.

% Processing SNR Points
ofdmInfo = wlanHEOFDMInfo('HE-LTF',cfgNDP);
numSNR = numel(snrRange); % Number of SNR points
misdetectionProbability = zeros(numTxSTAs,numSNR);
ind = wlanFieldIndices(cfgNDP); % Same for all STAs

%parfor isnr=1:numSNR % Use 'parfor' to speed up the simulation
for isnr=1:numSNR
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);
 rxFeedbackStatus = zeros(numPackets,numTxSTAs);
 chDelay = zeros(1,numTxSTAs);

 for pktIdx=1:numPackets
 rxWaveform = 0;

 802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-Based Feedback NDP

6-83

 % Generate random channel realization for each packet by varying
 % the UserIndex property of the channel. This assumes all STAs
 % have the same number of transmit antennas.
 chPermutations = randperm(numTxSTAs);
 for u=1:numTxSTAs
 % Generate HE TB feedback NDP waveform for each STA
 txSTA = wlanWaveformGenerator([],cfgSTA{u});

 % Pass waveform through a random TGax Channel
 channelIdx = chPermutations(u);
 reset(tgax{channelIdx}); % New channel realization
 [rxSTA,h] = tgax{channelIdx}([txSTA; zeros(50,size(txSTA,2))]);

 % Perform perfect channel delay estimate to find the start of
 % the packet
 chDelay(u) = channelDelay(h,chFilterCoefficients);

 % Combine uplink waveform from all STAs into one waveform
 rxWaveform = rxWaveform+rxSTA;
 end

 % Synchronize later in time by using the maximum channel delay
 % between all channels as the start of the packet
 pktOffset = max(chDelay(u)); % Packet start index

 % Pass the waveform through AWGN channel. Account for noise
 % energy in unused subcarriers.
 snrVal = snrRange(isnr)-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);
 rxWaveform = awgn(rxWaveform,snrVal);

 % Uplink processing (at the AP)
 rxHELTF = rxWaveform(pktOffset+(ind.HELTF(1):ind.HELTF(2)),:);
 heltfDemod = wlanHEDemodulate(rxHELTF,'HE-LTF',chanBW,cfgNDP.GuardInterval,cfgNDP.HELTFType);

 % Recover feedback status for all STAs
 for u=1:numTxSTAs
 rxFeedbackStatus(pktIdx,u) = wlanHETBNDPFeedbackStatus(heltfDemod,cfgSTA{u});
 end
 end
 % Probability of misdetection per STA
 misdetectionProbability(:,isnr) = 1-sum(rxFeedbackStatus==feedbackStatus(txSTAIndex))/numPackets;
 disp(['SNR ' num2str(snrRange(isnr)) ' completed']);
end

SNR -2 completed
SNR 0 completed
SNR 2 completed
SNR 4 completed
SNR 6 completed

Plot Probability of Misdetection Against SNR

markers = 'ox*sd^v><ph+';
numMarkers = numel(markers);
for u=1:numTxSTAs
 semilogy(snrRange,misdetectionProbability(u,:),['-' markers(mod(u-1,numMarkers)+1)]); hold on;
end
xlabel('SNR(dB)');

6 End-to-End Simulation

6-84

ylabel('Probability of misdetection');
dataStr = arrayfun(@(x)sprintf('STAID %d',x),STAID(txSTAIndex),'UniformOutput',false);
title(sprintf('%s, Channel %s, %d-by-%d',chanBW,delayProfile,numTx,numRx));
legend(dataStr);
grid on;

The number of packets tested at each SNR point depends on numPackets. For meaningful results,
increase the value of numPackets. This figure was created by running a longer simulation with
numPackets:1e4 and snrRange:-2:2:6.

 802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-Based Feedback NDP

6-85

Selected Bibliography

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

2 Montreuil, L. et al. NDP Short Feedback Design. IEEE 802.11-17/0044r4, May 2017.

6 End-to-End Simulation

6-86

Three-Dimensional Indoor Positioning with 802.11az
Fingerprinting and Deep Learning

This example shows how to train a convolutional neural network (CNN) for high-precision positioning
by using generated IEEE® 802.11az™ data. Using the trained CNN, you can predict the precise
position of multiple stations (STAs) or the room that STAs are located in based on fingerprinting. The
example obtains the dataset used for training and validating the CNN in two steps. Channel taps are
obtained by using ray tracing for a 3D indoor scenario then 802.11az links are simulated to generate
realistic channel state information (CSI).

Introduction

The IEEE 802.11az Wi-Fi™ standard [1 on page 6-103], commonly referred to as next generation
positioning (NGP), provides physical layer features that enable enhanced ranging and positioning
using classical techniques.

Classical techniques rely on line-of-sight (LOS) conditions to effectively extract temporal information,
such as time of arrival (ToA), or spatial information, such as angle of arrival (AoA), from a multipath
signal to compute a distance or range between devices. When the range between a minimum of three
devices can be measured, trilateration can be used to compute a position estimate. For more
information about how to use classical ranging and positioning techniques, see the “802.11az
Positioning Using Super-Resolution Time of Arrival Estimation” on page 6-105 example.

Fingerprinting and deep learning techniques can be used in Wi-Fi positioning systems to achieve sub-
meter accuracies even in non-line-of-sight (NLOS) multipath environments [2 on page 6-103]. A
fingerprint typically contains channel state information (CSI), such as a received signal strength
indicator (RSSI) or a channel estimate from a received signal, measured at a specific location in an
environment [3 on page 6-103].

During the training phase of the network, the example creates a database by sampling the channel
fingerprints at multiple known locations in an environment. The network estimates the user location
based on a signal received at an unknown location by using the database as a reference.

This example creates a data set of CIR fingerprints by using 802.11az signals in an indoor
environment, labeling each fingerprint with its location information. The example trains a CNN to
predict STA locations by using a subset of the fingerprints, then evaluates the performance of the
trained model by generating predictions of STA locations based on their CIR fingerprint remainder of
the data set.

For simplicity, this example uses a small data set, which results in a short simulation time. For more
accurate results, use a larger data set. The example provides pretrained models on page 6-99 to
show the high levels of performance that can be achieved with more training data.

Simulation Parameters

Indoor Propagation Environment

Generate training data for an indoor office environment specified by the office.stl file.

mapFileName = "office.stl";
viewer = siteviewer("SceneModel",mapFileName,"Transparency",0.25);

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-87

The example places four access points (APs) and a number of STAs that you specify in this
environment. The example generates the fingerprints based on the propagation channel defined by
the environment, then generates the associated channel impulse response by using ray tracing
techniques. For more information on ray tracing for indoor environments, see the “Indoor MIMO-
OFDM Communication Link using Ray Tracing” example.

AP and STA Parameters

Select the size of the transmit and receive antenna arrays, and the channel bandwidth. These
parameters control the quantity of data and its resolution within each fingerprint. Larger antenna
arrays produce more channel realizations and more CIRs per fingerprint. A higher bandwidth
increases the sample rate of the CIR, capturing it in more detail. Changing these parameters makes
the data set incompatible with the pretrained models, as the dimensions of each fingerprint must
match the shape of the model input layer.

S = RandStream("mt19937ar","Seed",5489); % Set the RNG for reproducibility
RandStream.setGlobalStream(S);

6 End-to-End Simulation

6-88

txArraySize = ; % Linear transmit array

rxArraySize = ; % Linear receive array

chanBW = ;

Specify the number of STAs used to map the environment and the distribution of STAs. To distribute
STAs uniformly in each dimension as an evenly spaced grid, set distribution to uniform. To
distribute STAs randomly within the environment, set distribution to random.

When you distribute the STAs uniformly, the example determines the number of STAs by using the
value of staSeparation, which measures the distance, in meters, between STAs in all dimensions.

When you randomly distribute STAs, specify the number of STAs by setting the value of numSTAs.

distribution = ;

staSeparation = ; % STA separation in meters. This parameter is used only when the distribution is uniform.

numSTAs = ; % Number of STAs. This parameter is used only when the distribution is random.

Localization and Positioning

The parameter task determines whether the example performs fingerprinting-based localization or
3D positioning [4 on page 6-103]. Fingerprinting-based localization is a multi-class classification task,
which predicts the discrete area of the map at which an STA is located. Fingerprinting-based
localization is useful for tasks where the detection of the discrete position of an STA, for example, the
room of a building or an aisle in a store, is sufficient. 3D positioning is a regression task in which the
output of the model is the predicted position of an STA. Positioning can estimate the exact location of
the user but can have a higher error for positions across an area when compared to localization.

task = ;

Fingerprinting-based localization task determines the general location of an STA, rather than its
precise 3D location. The following diagram shows the layout of the small office with discrete areas
used as classes for localization. The red square markers indicate the locations of the APs. The blue
dashed box represents the area where the example distributes the STAs during the training process.
The example restricts the height of the STAs to a range between 0.8 and 1.8 meters. This range
represents a realistic set of values for portable consumer devices. This constraint also minimizes the
chance of STAs being placed in unreachable positions.

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-89

Training Data Synthesis

This section shows how to synthesize the data set for training the CNN.

Generate AP and STA Positions

Generate the AP and STA objects and visualize them in the indoor scenario. If you use a file other
than office.stl, you must adjust the AP and STA locations within the
dlPositioningCreateEnvironment function to fit the new environment.

if distribution == "uniform"
 [APs,STAs] = dlPositioningCreateEnvironment(txArraySize,rxArraySize,staSeparation,"uniform");
else
 [APs,STAs] = dlPositioningCreateEnvironment(txArraySize,rxArraySize,numSTAs,"random");
end
show(APs)
show(STAs,"ShowAntennaHeight",false,"IconSize",[16 16]);
disp(['Simulating a scenario with ',num2str(numel(APs)),' APs and ',char(distribution),'ly distributed ',num2str(numel(STAs)),' STAs.'])

Simulating a scenario with 4 APs and uniformly distributed 480 STAs.

6 End-to-End Simulation

6-90

Generate Channel Characteristics by Using Ray Tracing Techniques

Set the parameters of the ray propagation model. This example considers only LOS and first-order
reflections by setting the MaxNumReflections parameter to 1.Increasing the maximum number of
reflections increases the simulation time. To consider only LOS propagation, set the
MaxNumReflections property to 0.

pm = propagationModel("raytracing", ...
 "CoordinateSystem","cartesian", ...
 "SurfaceMaterial","wood", ...
 "MaxNumReflections",1);

Perform ray tracing analysis for all AP-STA pairs. The raytrace function returns the generated rays
in a cell array of size NAP-by-NSTA, where NAP is the number of APs and NSTA is the number of STAs.

% Perform ray tracing for all transmitters and receivers in parallel
rays = raytrace(APs,STAs,pm,"Map",mapFileName);
size(rays)

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-91

ans = 1×2

 4 480

Visualize the calculated rays between all APs and a single STA. The color represents the associated
path loss in dB.

hide(STAs);
show(STAs(30),'IconSize',[32 32]);
plot([rays{:,30}],'ColorLimits',[50 95]);

Generate 802.11az CIR Fingerprint Features and Labels

This section shows how to compute the CIRs for each AP-STA pair by using the calculated rays. This
diagram shows the processing chain that the example uses to generate the CIRs.

6 End-to-End Simulation

6-92

Each AP transmits an 802.11az packet through a noisy channel, and each STA receives the packet.
The example assumes that each STA can differentiate between APs, and that no interference occurs
between APs.

Packet reception at a location fails if the path between the location and an AP, or if synchronization
fails due to low SNR. In this case, the generated CIR is a vector of zeros.

This example uses the magnitude of each multipath component in the CIR as training data. Therefore,
the generated CIRs are real-valued. The example stores the CIRs in a four-dimensional array of size
Ns-by-Ntx‐rx-by-NAP-by-Nr.

• Ns is the number of time-domain samples in the CIR.

• Ntx‐rx is the total number of transmit-receive antenna pairs.

• NAP is the number of APs.

• Nr is the number of channel realizations for all SNR points.

The example trains the CNN by combining these features with labels of the STA position or location
names.

To simulate variations in the environment, repeat the fingerprinting process under different noise
conditions by specifying a range of SNR values.

snrs = [10 15 20];

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-93

Configure the waveform parameters. In particular, set the number of space-time streams (STSs) to
the size of the transmit antenna array to ensure that the signal from each transmit antenna
contributes to the fingerprint of an STA during channel estimation.

cfg = heRangingConfig('ChannelBandwidth',chanBW, ...
 "NumTransmitAntennas",prod(txArraySize), ...
 "SecureHELTF",false, ...
 "GuardInterval",1.6);
cfg.User{1}.NumSpaceTimeStreams = prod(txArraySize);

Generate the data set.

[features,labels] = dlPositioningGenerateDataSet(rays,STAs,APs,cfg,snrs);

Generating Dataset: 10% complete.
Generating Dataset: 20% complete.
Generating Dataset: 30% complete.
Generating Dataset: 40% complete.
Generating Dataset: 50% complete.
Generating Dataset: 60% complete.
Generating Dataset: 70% complete.
Generating Dataset: 80% complete.
Generating Dataset: 90% complete.
Generating Dataset: 100% complete.

Deep Learning

Deep learning uses neural networks to approximate functions across a diverse range of domains. A
CNN is a neural network architecture that uses two-dimensional multichannel images. CNNs
preserve and learn features from spatial aspects of the data. The deep learning workflow comprises
these steps.

1 Define the training data.
2 Define the neural network model.
3 Configure the learning process.
4 Train the model.
5 Evaluate model performance.

Define Training Data

Neural networks are powerful models that can fit a variety of data. To validate results, split the data
set into 80% training data and 20% validation data. Training data is the data that the model learns to
fit by adjusting its weighted parameters based on the error of its predictions. Validation data is the
data that the example uses to ensure that the model is performing as expected on unseen data and
not overfitting the training data.

[training,validation] = dlPositioningSplitDataSet(features,labels,0.2);

Define Neural Network Model

A typical CNN consists of seven main layers.

1 Input layer, which defines the size and type of the input data
2 Convolutional layer, which performs convolution operations on the layer's input by using a set of

filters

6 End-to-End Simulation

6-94

3 Batch normalization layer, which prevents unstable gradients by normalizing the activations of a
layer

4 Activation (ReLU) layer, which a nonlinear activation function that thresholds the output of the
previous functional layer

5 Pooling layer, which extracts and pools feature information
6 Dropout layer, which randomly deactivates a percentage of the parameters of the previous layer

during training to prevent overfitting
7 Output layer, which defines the size and type of output data

You can form a deep network by arranging layers from these classes and repeating them in blocks.
The CNN in this example consists of four blocks, each with a convolution, batch normalization, ReLU,
and average pooling layer. The example adds dropout regularization (20%) before the final layers.
This architecture is similar to that of the CNN used in the “Train Convolutional Neural Network for
Regression” (Deep Learning Toolbox) example, which predicts the rotated positions of handwritten
digit images and demonstrates the diverse applications of deep learning models with minimal
changes to their parameters.

Construct the CNN.

layers = [

 imageInputLayer(size(training.X, 1:3))

 convolution2dLayer(3,256,"Padding","same")
 batchNormalizationLayer
 reluLayer

 averagePooling2dLayer(2,"Stride",2,"Padding","same")

 convolution2dLayer(3,256,"Padding","same")
 batchNormalizationLayer
 reluLayer

 averagePooling2dLayer(2,"Stride",2,"Padding","same")

 convolution2dLayer(3,256,"Padding","same")
 batchNormalizationLayer
 reluLayer

 averagePooling2dLayer(2,"Stride",2,"Padding","same")

 convolution2dLayer(3,256,"Padding","same")
 batchNormalizationLayer
 reluLayer

 averagePooling2dLayer(2,"Stride",2,"Padding","same")

 dropoutLayer(0.2)];

Specify the size of the output layer and the activation function for the output, depending on the
selected task.

if task == "localization"
 layers = [
 layers

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-95

 fullyConnectedLayer(7)
 softmaxLayer
 classificationLayer];
else % positioning
 layers = [
 layers
 fullyConnectedLayer(3)
 regressionLayer];
end

Match the labels given to the network with the expected model output for each task. The features are
an image of CIR fingerprints for both tasks.

if task == "localization"
 valY = validation.Y.classification;
 trainY = training.Y.classification;
else % positioning
 valY = validation.Y.regression;
 trainY = training.Y.regression;
end

Configure Learning Process and Train Model

Set the number of training data samples that the model evaluates during each training iteration.
Increase the number of samples when using a larger data set.

miniBatchSize = 32;

Set the validation frequency so that the network is validated about once per epoch. The network
evaluates the unseen samples to test generalization at the end of each validation period.

validationFrequency = floor(size(training.X,4)/miniBatchSize);

Specify the options that control the training process. The number of epochs controls how many times
the example trains the model consecutively on the full training data set. By default, the example
trains the model on a GPU if one is available. Using a GPU required Parallel Computing Toolbox™ and
a supported GPU device. For information on supported devices, see “GPU Computing Requirements”
(Parallel Computing Toolbox).

options = trainingOptions("adam", ...
 "MiniBatchSize",miniBatchSize, ...
 "MaxEpochs",3, ...
 "InitialLearnRate", 1e-4,...
 "Shuffle","every-epoch", ...
 "ValidationData",{validation.X,valY'}, ...
 "ValidationFrequency",validationFrequency, ...
 "Verbose",true, ...
 "ResetInputNormalization",true, ...
 "ExecutionEnvironment","auto");

Train the model.

net = trainNetwork(training.X,trainY',layers,options);

Training on single CPU.
Initializing input data normalization.

6 End-to-End Simulation

6-96

|==|
| Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation | Base Learning |
| | | (hh:mm:ss) | Accuracy | Accuracy | Loss | Loss | Rate |
|==|
1	1	00:00:02	6.25%	40.97%	2.4116	1.6647	1.0000e-04
1	36	00:00:21	53.12%	60.42%	1.1444	1.0845	1.0000e-04
2	50	00:00:28	62.50%		1.1303		1.0000e-04
2	72	00:00:40	68.75%	62.85%	0.8643	1.0163	1.0000e-04
3	100	00:00:53	62.50%		0.8839		1.0000e-04
3	108	00:00:58	78.12%	70.14%	0.6926	0.8464	1.0000e-04
==							
Training finished: Max epochs completed.

Evaluate Model Performance

Investigate the model performance by examining predicted values for the validation data. Predict
labels by passing the validation set features through the network, then evaluate the performance of
the network by comparing the predicted labels with the validation set labels.

if task == "localization"
 YPred = net.classify(validation.X);
else % positioning
 YPred = net.predict(validation.X);
end

Generate a visual and statistical view of the results.

For localization, the dlPositioningPlotResults function generates a three-dimensional map,
which displays the true locations of STAs. The color assigned to each STA denotes its predicted
location. The function also generates a confusion matrix in which the rows correspond to the
predicted class and the columns correspond to the true class. The diagonal cells correspond to
observations that are correctly classified. The off-diagonal cells correspond to incorrectly classified
observations. If the network performs well, elements in the main diagonal are significantly larger
than the other matrix elements.

For positioning, the color assigned to each STA denotes the distance error of the predicted position.
The function also generates a cumulative distribution function (CDF). The y-axis measures the
proportion of the data for which the measured distance error is less than or equal to the
corresponding value on the x-axis.

This example uses a small data set and limited training period, which produces modest results. You
can obtain more accurate results by using a CNN pretrained with a large data set on page 6-99.

metric = dlPositioningPlotResults(mapFileName,validation.Y,YPred,task);

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-97

6 End-to-End Simulation

6-98

Pretrained Model

Download a CNN for positioning and localization pretrained with a large data set from https://
www.mathworks.com/supportfiles/spc/wlan/Positioning80211azExample/R2021b/
pretrained_networks_R2021b.zip. This zip file contains two MAT files:

• localization_cbw40_4x4.mat - CNN trained for localization
• positioning_cbw40_4x4.mat - CNN trained for positioning

All models were trained for 100 epochs with a miniBatchSize value of 256 on a data set of
fingerprints from a uniform distribution of STAs with a staSeparation value of 0.1. The bandwidth
was 40 MHz bandwidth with four-antenna linear arrays in the transmitter and receiver (4×4 MIMO).

To explore the performance of these pretrained models, download and extract the zip file, load the
appropriate MAT file into the workspace, and run the Evaluate Model Performance on page 6-97
section again.

Effect of Antenna Array Size and Bandwidth

The pretrained models show that an increased number of STAs and training epochs improve
performance. This section shows the effect of channel bandwidth and size of antenna arrays on
performance.

These figures show the impact of channel bandwidth on positioning and localization performance.
These results were generated by training a model for 100 epochs with a miniBatchSize value of
256 with a data set compiled from a uniform distribution of STAs sampled at intervals of 0.1 meters,

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-99

https://www.mathworks.com/supportfiles/spc/wlan/Positioning80211azExample/pretrained_networks_R2021b.zip
https://www.mathworks.com/supportfiles/spc/wlan/Positioning80211azExample/pretrained_networks_R2021b.zip
https://www.mathworks.com/supportfiles/spc/wlan/Positioning80211azExample/pretrained_networks_R2021b.zip

in which each STA and AP contained a four-element linear antenna array. Using a larger bandwidth
results in more accurate estimation as a higher sampling rate increases the resolution of CIRs.

6 End-to-End Simulation

6-100

These figures show the impact of the number of transmit and receive antennas. These results were
generated using a bandwidth of 20 MHz. The accuracy increases for larger antenna arrays due to the
presence of more channel information. For example, a 4×4 channel contains 16 channel realizations,
whereas a 2×2 channel contains only four. As expected, the CNN performs better when trained with
more data.

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-101

6 End-to-End Simulation

6-102

These results were generated with data samples which were not used to train the CNNs. If data
samples used to train the CNN are also used to evaluate performance the results may differ.

References

1 IEEE P802.11az™/D2.6 Draft Standard for Information technology— Telecommunications and
information exchange between systems Local and metropolitan area networks— Specific
requirements - Amendment 3: Enhancements for positioning.

2 Kokkinis, Akis, Loizos Kanaris, Antonio Liotta, and Stavros Stavrou. “RSS Indoor Localization
Based on a Single Access Point.” Sensors 19, no. 17 (August 27, 2019): 3711. https://doi.org/
10.3390/s19173711.

3 Wang, Xuyu, Lingjun Gao, Shiwen Mao, and Santosh Pandey. “CSI-Based Fingerprinting for
Indoor Localization: A Deep Learning Approach.” IEEE Transactions on Vehicular Technology,
2016, 763–776. https://doi.org/10.1109/TVT.2016.2545523.

 Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning

6-103

4 Groves, Paul D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems.
Boston: Artech House, 2008.

6 End-to-End Simulation

6-104

802.11az Positioning Using Super-Resolution Time of Arrival
Estimation

This example shows how to estimate the position of a station (STA) in a multipath environment by
using a time-of-arrival-based (ToA-based) positioning algorithm defined in the IEEE® 802.11az™ Wi-
Fi™ standard. The example estimates the ToA by using a multiple signal classification (MUSIC) super-
resolution approach, then estimates the two-dimensional position of a STA by using trilateration. The
example then evaluates and compares the performance of the positioning algorithm at multiple
signal-to-noise ratio (SNR) points.

Introduction

The 802.11az standard [1 on page 6-118], commonly referred to as next generation positioning
(NGP), enables a STA to identify its position relative to multiple access points (APs). This standard
supports two high-efficiency (HE) ranging physical layer (PHY) protocol data unit (PPDU) formats:

• HE ranging null data packet (NDP)
• HE trigger-based (TB) ranging NDP

The HE ranging NDP and HE TB ranging NDP are the respective analogues of the HE sounding NDP
and HE TB feedback NDP PPDU formats, as defined in the 802.11ax™ standard. For more
information on these HE PPDU formats, see [2] on page 6-118.

The HE ranging NDP supports the positioning of one or more users with an optional secure HE long
training field (HE-LTF) sequence. The single-user HE ranging waveform contains HE-LTF symbols for
a single user, which also support an optional secure HE-LTF sequence. The multi-user HE ranging
waveform permits only secure HE-LTF symbols for multiple users. To improve position estimation
accuracy, single-user and multi-user waveforms can contain multiple repetitions of the HE-LTF
symbols. To parameterize and generate HE ranging NDPs, see the “802.11az Waveform Generation”
on page 1-48 example.

This example simulates an 802.11az network consisting of a STA and multiple APs. To estimate the
position of a STA, the network requires a minimum of three APs. The example simulates a ranging
measurement exchange for each STA-AP pair, then trilaterates the position of the STA by using these
measurements. The example repeats this simulation for multiple iterations and SNR points. This
diagram shows the positioning process in a network with one STA and three APs.

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-105

Packet Transmission and Reception

This example models the measurement exchange between the STA and APs by performing these
steps.

1 Generate a ranging NDP
2 Delay the NDP according to a randomly generated distance between the STA and AP, adding

fractional and integer sample delay
3 Pass the waveform through an indoor TGax channel. The example models different channel

realizations for different packets
4 Add additive white Gaussian noise (AWGN) to the received waveform. The example uses the same

SNR value for all the links between STA and APs
5 Perform synchronization and frequency correction on the received waveform
6 Demodulate the HE-LTF
7 Estimate the channel frequency response from the HE-LTF
8 Estimate the distance by using the MUSIC super-resolution algorithm
9 Combine distance estimates from other STA-AP pairs and trilaterate the position of the STA

6 End-to-End Simulation

6-106

This figure illustrates the processing for each STA-AP link.

Distance Ranging

The example performs a distance ranging measurement between the STA and each AP by capturing
the timestamps of the NDP. The STA records the time t1 (UL ToD) at which it transmits the uplink
NDP (UL NDP). The AP then captures the time t2 (UL ToA) at which it receives the UL NDP and
records the time t3 (DL ToD) at which it transmits the downlink NDP (DL NDP). The STA then
captures the time t4 (DL ToA) at which it receives the DL NDP. This diagram illustrates the
measurement sounding phase between a STA and a single AP [1 on page 6-118].

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-107

The example estimates TRTT the round trip time (RTT), by combining these timestamps.

TRTT = (t4− t1)− (t3− t2)

The example then computes the distance d between the STA and AP by using this equation.

d =
TRTT

2 c , where c is speed of light

The example estimates t2 and t4 by using MUSIC super-resolution. To compute these estimates, the
example performs these steps [3 on page 6-118].

1 Interpolate across missing subcarriers from the channel frequency response (CFR), assuming
uniform subcarrier spacing

2 Estimate the CFR correlation matrix
3 Decorrelate the multipaths by using spatial smoothing

6 End-to-End Simulation

6-108

4 Improve the correlation matrix estimate by performing forward-backward averaging. The
example assumes that CFR estimates from multiple spatial streams are different CFR snapshots,
and uses all the snapshots for correlation matrix estimation.

5 Run the MUSIC algorithm. Perform eigendecomposition on the correlation matrix to separate it
into signal and noise subspaces. Estimate the time-domain delay profile by finding all instances
where signal and noise subspaces are orthogonal. The example assumes that the precise signal
subspace dimension, equal to the number of multipaths, is known.

6 Determine the ToA by finding the first peak of the recovered multipaths in the estimated delay
profile, assumed to be the direct-line-of-sight (DLOS) path

This diagram illustrates the distance ranging process.

This plot compares the true multipath delay profile and the MUSIC estimated delay profile for a
single 802.11az link simulation.

heRangingPlotDelayProfile()

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-109

Simulation Parameters

This example performs a ranging and positioning simulation for multiple iterations and SNR points.
At each iteration, the AP and the STA exchange multiple uplink and downlink packets. The example
estimates the ranging error between the AP and the STA for each iteration by comparing the
estimated distance between the AP and the STA with the known distance.

Specify the number of iterations, SNR points, and APs in the networks. To estimate the position of a
STA, the network requires a minimum of three APs. For each iteration, use a different random set of
AP positions, a different channel realization, and a different AWGN profile. The example generates a
cumulative distribution function (CDF) for the absolute ranging error by using the ranging
measurements from all iterations and all STA-AP pairs.

numIterations = ; % Number of iterations

snrRange = ; % SNR points, in dB

numAPs = ; % Number of APs

802.11az Waveform Configuration

Configure waveform generators for each AP and the STA.

chanBW = ; % Channel bandwidth

numTx = ; % Number of transmit antennas

numRx = ; % Number of receive antennas

numSTS = ; % Number of space-time streams

numLTFRepetitions = ; % Number of HE-LTF repetitions

Configure the HE ranging NDP parameters of the STA.

cfgSTABase = heRangingConfig;
cfgSTABase.ChannelBandwidth = chanBW;
cfgSTABase.NumTransmitAntennas = numTx;
cfgSTABase.SecureHELTF = true;
cfgSTABase.User{1}.NumSpaceTimeStreams = numSTS;
cfgSTABase.User{1}.NumHELTFRepetition = numLTFRepetitions;
cfgSTABase.GuardInterval = 1.6;

Configure the HE ranging NDP parameters of the APs.

cfgAPBase = cell(1,numAPs);
for iAP = 1:numAPs
 cfgAPBase{iAP} = heRangingConfig;
 cfgAPBase{iAP}.ChannelBandwidth = chanBW;
 cfgAPBase{iAP}.NumTransmitAntennas = numTx;
 cfgAPBase{iAP}.SecureHELTF = true;
 cfgAPBase{iAP}.User{1}.NumSpaceTimeStreams = numSTS;
 cfgAPBase{iAP}.User{1}.NumHELTFRepetition = numLTFRepetitions;
 cfgAPBase{iAP}.GuardInterval = 1.6;
end

6 End-to-End Simulation

6-110

ofdmInfo = wlanHEOFDMInfo('HE-LTF',chanBW,cfgSTABase.GuardInterval);
sampleRate = wlanSampleRate(chanBW);

Channel Configuration

Configure the WLAN TGax multipath channel by using the wlanTGaxChannel System object™. This
System object can generate a channel with a dominant direct path, in which the DLOS path is the
strongest path, or a channel with a non-dominant direct path, for which the DLOS path is present, but
not the strongest path.

delayProfile = ; % TGax channel multipath delay profile

carrierFrequency = 5e9; % Carrier frequency, in Hz
speedOfLight = physconst('lightspeed');

chanBase = wlanTGaxChannel;
chanBase.DelayProfile = delayProfile;
chanBase.NumTransmitAntennas = numTx;
chanBase.NumReceiveAntennas = numRx;
chanBase.SampleRate = sampleRate;
chanBase.CarrierFrequency = carrierFrequency;
chanBase.ChannelBandwidth = chanBW;
chanBase.PathGainsOutputPort = true;
chanBase.NormalizeChannelOutputs = false;

Get channel filter delay and the number of paths

chBaseInfo = info(chanBase);
chDelay = chBaseInfo.ChannelFilterDelay;
numPaths = size(chBaseInfo.PathDelays,2);

Ranging Measurement

Run a ranging simulation with multiple iterations for all STA-AP pairs. Display the ranging mean
absolute error (MAE) and the ranging error CDF for each SNR point.

delayULDL = 16e-6; % Time delay between UL NDP ToA and DL NDP ToD, in seconds

numSNR = numel(snrRange);
distEst = zeros(numAPs,numIterations,numSNR); % Estimated distance
distance = zeros(numAPs,numIterations,numSNR); % True distance
positionSTA = zeros(2,numIterations,numSNR); % Two-dimensional position of the STA
positionAP= zeros(2,numAPs,numIterations,numSNR); % Two-dimensional positions of the APs
per = zeros(numSNR,1); % Packet error rate (PER)

%parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
for isnr = 1:numSNR

 % Use a separate channel and waveform configuration object for each parfor stream
 chan = chanBase;
 cfgAP = cfgAPBase;
 cfgSTA = cfgSTABase;

 % Initialize ranging error and total failed packet count variables
 rangingError = 0;
 failedPackets = 0;

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-111

 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',123456);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Define the SNR per active subcarrier to account for noise energy in nulls
 snrVal = snrRange(isnr) - 10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 for iter = 1:numIterations

 % Gennerate random AP positions
 [positionSTA(:,iter,isnr),positionAP(:,:,iter,isnr),distanceAllAPs] = heGeneratePositions(numAPs);
 distance(:,iter,isnr) = distanceAllAPs;

 % Range-based delay
 delay = distance(:,iter,isnr)/speedOfLight;
 sampleDelay = delay*sampleRate;

 % Loop over the number of APs
 for ap = 1:numAPs

 linkType = ["Uplink","Downlink"];

 % ToD of UL NDP (t1)
 todUL = randsrc(1,1,0:1e-9:1e-6);

 % Loop for both UL and DL transmission
 numLinks = numel(linkType);
 txTime = zeros(1,numLinks);

 for l = 1:numLinks
 if linkType(l) == "Uplink" % STA to AP
 cfgSTA.UplinkIndication = 1; % For UL
 % Generate a random secure HE-LTF sequence for the exchange
 cfgSTA.User{1}.SecureHELTFSequence = dec2hex(randsrc(1,10,(0:15)))';
 cfg = cfgSTA;
 else % AP to STA
 % Generate a random secure HE-LTF sequence for the exchange
 cfgAP{ap}.User{1}.SecureHELTFSequence = dec2hex(randsrc(1,10,(0:15)))';
 cfg = cfgAP{ap}; % For DL
 end

 % Set different channel for UL and DL, assuming that the channel is not reciprocal
 reset(chan)

 % Generate HE Ranging NDP transmission
 tx = heRangingWaveformGenerator(cfg);

 % Introduce time delay (fractional and integer) in the transmit waveform
 txDelay = heDelaySignal(tx,sampleDelay(ap));

 % Pad signal and pass through multipath channel
 txMultipath = chan([txDelay;zeros(50,cfg.NumTransmitAntennas)]);

 % Pass waveform through AWGN channel
 rx = awgn(txMultipath,snrVal);

6 End-to-End Simulation

6-112

 % Perform synchronization and channel estimation
 [chanEstActiveSC,integerOffset] = heRangingSynchronize(rx,cfg);

 % Estimate the transmission time between UL and DL
 if ~isempty(chanEstActiveSC) % If packet detection is successful

 % Estimate fractional delay with MUSIC super-resolution
 fracDelay = heRangingTOAEstimate(chanEstActiveSC,ofdmInfo.ActiveFFTIndices, ...
 ofdmInfo.FFTLength,sampleRate,numPaths);

 integerOffset = integerOffset - chDelay; % Account for channel filter delay
 intDelay = integerOffset/sampleRate; % Estimate integer time delay
 txTime(l) = intDelay + fracDelay; % Transmission time

 else % If packet detection fails
 txTime(l) = NaN;
 end

 end

 if ~any(isnan(txTime)) % If packet detection succeeds

 % TOA of UL waveform (t2)
 toaUL = todUL + txTime(1);

 % Time of departure of DL waveform (t3)
 todDL = toaUL + delayULDL;

 % TOA DL waveform (t4)
 toaDL = todDL + txTime(2);

 % Compute the RTT
 rtt = (toaDL-todUL) - (todDL-toaUL);

 % Estimate the distance between the STA and AP
 distEst(ap,iter,isnr) = (rtt/2)*speedOfLight;
 % Accumulate error to MAE
 rangingError = rangingError + abs(distanceAllAPs(ap) - distEst(ap,iter,isnr));

 else % If packet detection fails
 distEst(ap,iter,isnr) = NaN;
 failedPackets = failedPackets + 1;
 end

 end
 end
 mae = rangingError/((numAPs*numIterations) - failedPackets); % MAE for successful packets
 per(isnr) = failedPackets/(numAPs*numIterations); % PER
 if(per(isnr) > 0.01) % Use only successful packets for ranging and positioning
 warning('wlan:discardPacket','At SNR = %d dB, %d%% of packets were discarded',snrRange(isnr),100*per(isnr));
 end
 disp(['At SNR = ',num2str(snrRange(isnr)),' dB, ','Ranging mean absolute error = ',num2str(mae), ' meters.'])
end

At SNR = 15 dB, Ranging mean absolute error = 0.57082 meters.
At SNR = 25 dB, Ranging mean absolute error = 0.40224 meters.
At SNR = 35 dB, Ranging mean absolute error = 0.25439 meters.

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-113

% Reshape to consider all packets within one SNR point as one dataset
rangingError = reshape(abs(distance - distEst),[numAPs*numIterations,numSNR]);
hePlotErrorCDF(rangingError,snrRange)
xlabel('Absolute ranging error (meters)')
title('Ranging Error CDF')

Trilateration

Trilaterate the location of the STA in two dimensions by using the distance estimates, then calculate
the positioning root-mean-square error (RMSE) for each iteration by using the STA position estimate.
Display the average RMSE and its CDF for each SNR point.

positionSTAEst = zeros(2,numIterations,numSNR);
RMSE = zeros(numIterations,numSNR);
for isnr = 1:numSNR
 for i = 1:numIterations
 positionSTAEst(:,i,isnr) = hePositionEstimate(squeeze(positionAP(:,:,i,isnr)),squeeze(distEst(:,i,isnr)));
 end
 % Find the RMSE for each iteration, then take the mean of all RMSEs
 RMSE = reshape(sqrt(mean(((positionSTAEst-positionSTA).^2),1)),[numIterations numSNR]);
 posEr = mean(RMSE(:,isnr),'all','omitnan');
 disp(['At SNR = ',num2str(snrRange(isnr)),' dB, ', 'Average RMS Positioning error = ', num2str(posEr), ' meters.'])
end

At SNR = 15 dB, Average RMS Positioning error = 0.61713 meters.
At SNR = 25 dB, Average RMS Positioning error = 0.40481 meters.
At SNR = 35 dB, Average RMS Positioning error = 0.26968 meters.

6 End-to-End Simulation

6-114

hePlotErrorCDF(RMSE,snrRange)
xlabel('RMS positioning error (meters)')
title('Positioning Error CDF')

Plot the location estimate and the trilateration circles of the last iteration.

hePlotTrilaterationCircles(positionAP(:,:,numIterations,numSNR),positionSTAEst(:,numIterations,numSNR),distEst(:,numIterations,numSNR),snrRange(numSNR),numIterations);

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-115

Conclusion

This example shows how to use a positioning algorithm with the IEEE® 802.11az™ standard. In
particular, the example shows how to estimate the transmit-receive distance between a STA and AP
by using MUSIC super-resolution, and how to locate a STA in two dimensions by using the ranging
measurements from multiple STA-AP pairs. The example demonstrates the increase in performance of
the positioning system at higher SNRs by computing the positioning estimate at multiple SNR points.

Further Exploration

Besides SNR, several important parameters impact positioning performance, such as HE-LTF
repetitions, number of spatial streams, higher bandwidths, and channel delay profiles. This figure
shows the impact of HE-LTF repetitions on ranging performance. To generate this figure, run a longer
simulation with three randomly placed APs and 4000 iterations for a Model-B 2×2 MIMO channel of
20 MHz at 20 dB SNR. The figure shows that the ranging error decreases with the increase in HE-
LTF repetitions. This decrease occurs because HE-LTF repetitions effectively reduce the noise in the
CFR by averaging out multiple CFR estimates.

6 End-to-End Simulation

6-116

This figure shows the impact of different MIMO configurations on ranging performance. To generate
this figure, run a longer simulation with three randomly placed APs and 4000 iterations, generating
ranging packets with three HE-LTF repetitions at 20 MHz and specifying a Model-B channel at 20 dB
SNR. The figure shows that the ranging error decreases with higher-order MIMO configurations. This
decrease occurs because higher-order MIMO configurations produce more CFR snapshots from the
different spatial streams available. More CFR snapshots give a better correlation matrix estimate
which yields better ToA and distance estimates.

 802.11az Positioning Using Super-Resolution Time of Arrival Estimation

6-117

Related Examples

• “Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning” on page
6-87. Trains a convolutional neural network (CNN) for localization and positioning by using Deep
Learning Toolbox and IEEE 802.11az data generated with WLAN Toolbox.

• “802.11az Waveform Generation” on page 1-48. Parameterizes and generates IEEE 802.11az high-
efficiency (HE) ranging null data packet (NDP) waveforms and highlights some of the key features
of the standard.

References

1 IEEE P802.11az™/D2.0 Draft Standard for Information technology— Telecommunications and
information exchange between systems Local and metropolitan area networks— Specific
requirements - Amendment 3: Enhancements for positioning.

2 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High Efficiency WLAN.

3 Xinrong Li and K. Pahlavan, "Super-resolution TOA estimation with diversity for indoor
geolocation," in IEEE Transactions on Wireless Communications, vol. 3, no. 1, pp. 224-234, Jan.
2004, doi: 10.1109/TWC.2003.819035.

6 End-to-End Simulation

6-118

Design a Deep Neural Network with Simulated Data to Detect
WLAN Router Impersonation

This example shows how to design a radio frequency (RF) fingerprinting convolutional neural
network (CNN) with simulated data. You train the CNN with simulated wireless local area network
(WLAN) beacon frames from known and unknown routers for RF fingerprinting. You then compare
the media access control (MAC) address of received signals and the RF fingerprint detected by the
CNN to detect WLAN router impersonators.

For more information on how to test the designed neural network with signals captured from real Wi-
Fi® routers, see the “Test a Deep Neural Network with Captured Data to Detect WLAN Router
Impersonation” example.

Detect Router Impersonation Using RF Fingerprinting

Router impersonation is a form of attack on a WLAN network where a malicious agent tries to
impersonate a legitimate router and trick network users to connect to it. Security identification
solutions based on simple digital identifiers, such as MAC addresses, IP addresses, and SSID, are not
effective in detecting such an attack. These identifiers can be easily spoofed. Therefore, a more
secure solution uses other information, such as the RF signature of the radio link, in addition to these
simple digital identifiers.

A wireless transmitter-receiver pair creates a unique RF signature at the receiver that is a
combination of the channel and RF impairments. RF Fingerprinting is the process of distinguishing
transmitting radios in a shared spectrum through these signatures. In [1] on page 6-132, authors
designed a deep learning (DL) network that consumes raw baseband in-phase/quadrature (IQ)
samples and identifies the transmitting radio. The network can identify the transmitting radios if the
RF impairments are dominant or the channel profile stays constant during the operation time. Most
WLAN networks have fixed routers that create a static channel profile when the receiver location is
also fixed. In such a scenario, the deep learning network can identify router impersonators by
comparing the received signal's RF fingerprint and MAC address pair to that of the known routers.

This example simulates a WLAN system with several fixed routers and a fixed observer using the
WLAN Toolbox™ and trains a neural network (NN) with the simulated data using Deep Learning
Toolbox™.

System Description

Assume an indoor space with a number of trusted routers with known MAC addresses, which we will
refer to as known routers. Also, assume that unknown routers may enter the observation area, some
of which may be router impersonators. The class "Unknown" represents any transmitting device that
is not contained in the known set. The following figure shows a scenario where there are three known
routers. The observer collects non-high throughput (non-HT) beacon signals from these routers and
uses the (legacy) long training field (L-LTF) to identify the RF fingerprint. Transmitted L-LTF signals
are the same for all routers that enable the algorithm to avoid any data dependency. Since the routers
and the observer are fixed, the RF fingerprints (combination of multipath channel profile and RF
impairments) RF1, RF2, and RF3 do not vary in time. Unknown router data is a collection of random
RF fingerprints, which are different than the known routers.

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

6-119

The following figure shows a user connected to a router and a mobile hot spot. After training, the
observer receives beacon frames and decodes the MAC address. Also, the observer extracts the L-LTF
signal and uses this signal to classify the RF fingerprint of the source of the beacon frame. If the MAC
address and the RF fingerprint match, as in the case of Router 1, Router 2, and Router3, then the
observer declares the source as a "known" router. If the MAC address of the beacon is not in the
database and the RF fingerprint does not match any of the known routers, as in the case of a mobile
hot spot, then the observer declares the source as an "unknown" router.

6 End-to-End Simulation

6-120

The following figure shows a router impersonator in action. A router impersonator (a.k.a. evil twin)
can replicate the MAC address of a known router and transmit beacon frames. Then, the hacker can
jam the original router and force the user to connect to the evil twin. The observer receives the
beacon frames from the evil twin too and decodes the MAC address. The decoded MAC address
matches the MAC address of a known router but the RF fingerprint does not match. The observer
declares the source as a router impersonator.

Set System Parameters

Generate a dataset of 5,000 Non-HT WLAN beacon frames for each router. Use MAC addresses as
labels for the known routers; the remaining are labeled as "Unknown". A NN is trained to classify the
known routers as well as to detect any unknown ones. Split the dataset into training, validation, and
test, where the splitting ratios are 80%, 10%, and 10%, respectively. Consider an SNR of 20 dB,
working on the 5 GHz band. The number of simulated devices is set to 4 but it can be modified by
choosing a different value for numKnownRouters. Set the number of unknown routers more than the
known ones to represent in the dataset the variability in the unknown router RF fingerprints.

numKnownRouters = 4;
numUnknownRouters = 10;
numTotalRouters = numKnownRouters+numUnknownRouters;
SNR = 20; % dB
channelNumber = 153; % WLAN channel number
channelBand = 5; % GHz
frameLength = 160; % L-LTF sequence length in samples

By default, this example downloads training data and trained network from https://
www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar.
If you do not have an Internet connection, you can download the file manually on a computer that is
connected to the Internet and save to the same directory as the current example files.

To run this example quickly, download the pretrained network and generate a small number of
frames, for example 10. To train the network on your computer, choose the "Train network now"
option (i.e. set trainNow to true). Generating 5000 frames of data takes about 50 minutes on an
Intel® Xeon® W-2133 CPU @ 3.6 GHz with 64 GB memory. Training this network takes about 20

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

6-121

https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar
https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar

seconds with an NVIDIA® GeForce RTX 3080 GPU and about 3 minutes with an Intel® Xeon®
W-2133 CPU @ 3.6 GHz.

trainNow = ;

if trainNow
 numTotalFramesPerRouter = 5000; %#ok<UNRCH>
else
 numTotalFramesPerRouter = 10;
 rfFingerprintingDownloadData('simulated')
end

Starting download of data files from:
 https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingSimulatedData_R2023a.tar
Download and extracting files done

numTrainingFramesPerRouter = numTotalFramesPerRouter*0.8;
numValidationFramesPerRouter = numTotalFramesPerRouter*0.1;
numTestFramesPerRouter = numTotalFramesPerRouter*0.1;

Generate WLAN Waveforms

Wi-Fi routers that implement 802.11a/g/n/ac protocols transmit beacon frames in the 5 GHz band to
broadcast their presence and capabilities using the OFDM non-HT format. The beacon frame consists
of two main parts: preamble (SYNC) and payload (DATA). The preamble has two parts: short training
and long training. In this example, the payload contains the same bits except the MAC address for
each router. The CNN uses the L-LTF part of the preamble as training units. Reusing the L-LTF signal
for RF fingerprinting provides an overhead-free fingerprinting solution. Use wlanMACFrameConfig,
wlanMACFrame, wlanNonHTConfig, and wlanWaveformGenerator functions to generate WLAN
beacon frames.

% Create Beacon frame-body configuration object
frameBodyConfig = wlanMACManagementConfig;

% Create Beacon frame configuration object
beaconFrameConfig = wlanMACFrameConfig('FrameType', 'Beacon', ...
 "ManagementConfig", frameBodyConfig);

% Generate Beacon frame bits
[~, mpduLength] = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

% Create a wlanNONHTConfig object, 20 MHz bandwidth and MCS 1 are used
nonHTConfig = wlanNonHTConfig(...
 'ChannelBandwidth', "CBW20",...
 "MCS", 1,...
 "PSDULength", mpduLength);

The rfFingerprintingNonHTFrontEnd object performs front-end processing including extracting the
L-LTF signal. The object is configured with a channel bandwidth of 20 MHz to process non-HT
signals.

rxFrontEnd = rfFingerprintingNonHTFrontEnd('ChannelBandwidth', 'CBW20');

fc = wlanChannelFrequency(channelNumber, channelBand);
fs = wlanSampleRate(nonHTConfig);

6 End-to-End Simulation

6-122

Setup Channel and RF Impairments

Pass each frame through a channel with

• Rayleigh multipath fading
• Radio impairments, such as phase noise, frequency offset and DC offset
• AWGN

Rayleigh Multipath and AWGN

The channel passes the signals through a Rayleigh multipath fading channel using the
comm.RayleighChannel System object™. Assume a delay profile of [0 1.8 3.4] samples with
corresponding average path gains of [0 -2 -10] dB. Since the channel is static, set maximum Doppler
shift to zero to make sure that the channel does not change for the same radio. Implement the
multipath channel with these settings. Add noise using the awgn function,

multipathChannel = comm.RayleighChannel(...
 'SampleRate', fs, ...
 'PathDelays', [0 1.8 3.4]/fs, ...
 'AveragePathGains', [0 -2 -10], ...
 'MaximumDopplerShift', 0);

Radio Impairments

The RF impairments, and their corresponding range of values are:

• Phase noise [0.01, 0.3] rms (degrees)
• Frequency offset [-4, 4] ppm
• DC offset: [-50, -32] dBc

See helperRFImpairments on page 6-131 function for more details on RF impairment simulation. This
function uses comm.PhaseFrequencyOffset and comm.PhaseNoise System objects.

phaseNoiseRange = [0.01, 0.3];
freqOffsetRange = [-4, 4];
dcOffsetRange = [-50, -32];

rng(123456) % Fix random generator

% Assign random impairments to each simulated radio within the previously
% defined ranges
radioImpairments = repmat(...
 struct('PhaseNoise', 0, 'DCOffset', 0, 'FrequencyOffset', 0), ...
 numTotalRouters, 1);
for routerIdx = 1:numTotalRouters
 radioImpairments(routerIdx).PhaseNoise = ...
 rand*(phaseNoiseRange(2)-phaseNoiseRange(1)) + phaseNoiseRange(1);
 radioImpairments(routerIdx).DCOffset = ...
 rand*(dcOffsetRange(2)-dcOffsetRange(1)) + dcOffsetRange(1);
 radioImpairments(routerIdx).FrequencyOffset = ...
 fc/1e6*(rand*(freqOffsetRange(2)-freqOffsetRange(1)) + freqOffsetRange(1));
end

Apply Channel Impairments and Generate Data Frames for Training

Apply the RF and channel impairments defined previously. Reset the channel object for each radio to
generate an independent channel. Use rfFingerprintingNonHTFrontEnd function to process the

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

6-123

received frames. Finally, extract the L-LTF from every transmitted WLAN frame. Split the received L-
LTF signals into training, validation and test sets.

% Create variables that will store the training, validation and testing
% datasets
xTrainingFrames = zeros(frameLength, numTrainingFramesPerRouter*numTotalRouters);
xValFrames = zeros(frameLength, numValidationFramesPerRouter*numTotalRouters);
xTestFrames = zeros(frameLength, numTestFramesPerRouter*numTotalRouters);

% Index vectors for train, validation and test data units
trainingIndices = 1:numTrainingFramesPerRouter;
validationIndices = 1:numValidationFramesPerRouter;
testIndices = 1:numTestFramesPerRouter;

tic
generatedMACAddresses = strings(numTotalRouters, 1);
rxLLTF = zeros(frameLength, numTotalFramesPerRouter); % Received L-LTF sequences
for routerIdx = 1:numTotalRouters

 % Generate a 12-digit random hexadecimal number as a MAC address for
 % known routers. Set the MAC address of all unknown routers to
 % 'AAAAAAAAAAAA'.
 if (routerIdx<=numKnownRouters)
 generatedMACAddresses(routerIdx) = string(dec2hex(bi2de(randi([0 1], 12, 4)))');
 else
 generatedMACAddresses(routerIdx) = 'AAAAAAAAAAAA';
 end
 elapsedTime = seconds(toc);
 elapsedTime.Format = 'hh:mm:ss';
 fprintf('%s - Generating frames for router %d with MAC address %s\n', ...
 elapsedTime, routerIdx, generatedMACAddresses(routerIdx))

 % Set MAC address into the wlanFrameConfig object
 beaconFrameConfig.Address2 = generatedMACAddresses(routerIdx);

 % Generate beacon frame bits
 beacon = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

 txWaveform = wlanWaveformGenerator(beacon, nonHTConfig);

 txWaveform = helperNormalizeFramePower(txWaveform);

 % Add zeros to account for channel delays
 txWaveform = [txWaveform; zeros(160,1)]; %#ok<AGROW>

 % Reset multipathChannel object to generate a new static channel
 reset(multipathChannel)

 frameCount= 0;
 while frameCount<numTotalFramesPerRouter

 rxMultipath = multipathChannel(txWaveform);

 rxImpairment = helperRFImpairments(rxMultipath, radioImpairments(routerIdx), fs);

 rxSig = awgn(rxImpairment,SNR,0);

 % Detect the WLAN packet and return the received L-LTF signal using

6 End-to-End Simulation

6-124

 % rfFingerprintingNonHTFrontEnd object
 [valid, ~, ~, ~, ~, LLTF] = rxFrontEnd(rxSig);

 % Save successfully received L-LTF signals
 if valid
 frameCount=frameCount+1;
 rxLLTF(:,frameCount) = LLTF;
 end

 if mod(frameCount,500) == 0
 elapsedTime = seconds(toc);
 elapsedTime.Format = 'hh:mm:ss';
 fprintf('%s - Generated %d/%d frames\n', ...
 elapsedTime, frameCount, numTotalFramesPerRouter)
 end
 end

 rxLLTF = rxLLTF(:, randperm(numTotalFramesPerRouter));

 % Split data into training, validation and test
 xTrainingFrames(:, trainingIndices+(routerIdx-1)*numTrainingFramesPerRouter) ...
 = rxLLTF(:, trainingIndices);
 xValFrames(:, validationIndices+(routerIdx-1)*numValidationFramesPerRouter)...
 = rxLLTF(:, validationIndices+ numTrainingFramesPerRouter);
 xTestFrames(:, testIndices+(routerIdx-1)*numTestFramesPerRouter)...
 = rxLLTF(:, testIndices + numTrainingFramesPerRouter+numValidationFramesPerRouter);
end

00:00:00 - Generating frames for router 1 with MAC address 4DA3EE3C8968
00:00:00 - Generating frames for router 2 with MAC address B1077CFE3777
00:00:01 - Generating frames for router 3 with MAC address DB28133A97BF
00:00:01 - Generating frames for router 4 with MAC address B8AF375DAC0F
00:00:01 - Generating frames for router 5 with MAC address AAAAAAAAAAAA
00:00:01 - Generating frames for router 6 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 7 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 8 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 9 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 10 with MAC address AAAAAAAAAAAA
00:00:02 - Generating frames for router 11 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 12 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 13 with MAC address AAAAAAAAAAAA
00:00:03 - Generating frames for router 14 with MAC address AAAAAAAAAAAA

% Label received frames. Label the first numKnownRouters with their MAC
% address. Label the rest with "Unknown”.
labels = generatedMACAddresses;
labels(generatedMACAddresses == generatedMACAddresses(numTotalRouters)) = "Unknown";

yTrain = repelem(labels, numTrainingFramesPerRouter);
yVal = repelem(labels, numValidationFramesPerRouter);
yTest = repelem(labels, numTestFramesPerRouter);

Create Real-Valued Input Matrices

The Deep Learning model only works on real numbers. Thus, I and Q are split into two separate
columns. Then, the data is rearranged into a frameLength X 2 x 1 x numFrames array, as required by
the Deep Learning Toolbox. Additionally, the training set is shuffled, and the label variables are saved
as categorical variables.

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

6-125

https://www.mathworks.com/products/deep-learning.html

% Rearrange datasets into a one-column vector
xTrainingFrames = xTrainingFrames(:);
xValFrames = xValFrames(:);
xTestFrames = xTestFrames(:);

% Separate between I and Q
xTrainingFrames = [real(xTrainingFrames), imag(xTrainingFrames)];
xValFrames = [real(xValFrames), imag(xValFrames)];
xTestFrames = [real(xTestFrames), imag(xTestFrames)];

% Reshape training data into a frameLength x 2 x 1 x
% numTrainingFramesPerRouter*numTotalRouters matrix
xTrainingFrames = permute(...
 reshape(xTrainingFrames,[frameLength,numTrainingFramesPerRouter*numTotalRouters, 2, 1]),...
 [1 3 4 2]);

% Shuffle data
vr = randperm(numTotalRouters*numTrainingFramesPerRouter);
xTrainingFrames = xTrainingFrames(:,:,:,vr);

% Create label vector and shuffle
yTrain = categorical(yTrain(vr));

% Reshape validation data into a frameLength x 2 x 1 x
% numValidationFramesPerRouter*numTotalRouters matrix
xValFrames = permute(...
 reshape(xValFrames,[frameLength,numValidationFramesPerRouter*numTotalRouters, 2, 1]),...
 [1 3 4 2]);

% Create label vector
yVal = categorical(yVal);

% Reshape test dataset into a numTestFramesPerRouter*numTotalRouter matrix
xTestFrames = permute(...
 reshape(xTestFrames,[frameLength,numTestFramesPerRouter*numTotalRouters, 2, 1]),...
 [1 3 4 2]); %#ok<NASGU>

% Create label vector
yTest = categorical(yTest); %#ok<NASGU>

Train the Neural Network

This example uses a neural network (NN) architecture that consists of two convolutional and three
fully connected layers. The intuition behind this design is that the first layer will learn features
independently in I and Q. Note that the filter sizes are 1x7. Then, the next layer will use a filter size of
2x7 that will extract features combining I and Q together. Finally, the last three fully connected layers
will behave as a classifier using the extracted features in the previous layers [1] on page 6-132.

poolSize = [2 1];
strideSize = [2 1];
layers = [
 imageInputLayer([frameLength 2 1], 'Normalization', 'none', 'Name', 'Input Layer')

 convolution2dLayer([7 1], 50, 'Padding', [1 0], 'Name', 'CNN1')
 batchNormalizationLayer('Name', 'BN1')
 leakyReluLayer('Name', 'LeakyReLu1')
 maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool1')

6 End-to-End Simulation

6-126

 convolution2dLayer([7 2], 50, 'Padding', [1 0], 'Name', 'CNN2')
 batchNormalizationLayer('Name', 'BN2')
 leakyReluLayer('Name', 'LeakyReLu2')
 maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool2')

 fullyConnectedLayer(256, 'Name', 'FC1')
 leakyReluLayer('Name', 'LeakyReLu3')
 dropoutLayer(0.5, 'Name', 'DropOut1')

 fullyConnectedLayer(80, 'Name', 'FC2')
 leakyReluLayer('Name', 'LeakyReLu4')
 dropoutLayer(0.5, 'Name', 'DropOut2')

 fullyConnectedLayer(numKnownRouters+1, 'Name', 'FC3')
 softmaxLayer('Name', 'SoftMax')
 classificationLayer('Name', 'Output')
]

layers =
 18×1 Layer array with layers:

 1 'Input Layer' Image Input 160×2×1 images
 2 'CNN1' 2-D Convolution 50 7×1 convolutions with stride [1 1] and padding [1 1 0 0]
 3 'BN1' Batch Normalization Batch normalization
 4 'LeakyReLu1' Leaky ReLU Leaky ReLU with scale 0.01
 5 'MaxPool1' 2-D Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 6 'CNN2' 2-D Convolution 50 7×2 convolutions with stride [1 1] and padding [1 1 0 0]
 7 'BN2' Batch Normalization Batch normalization
 8 'LeakyReLu2' Leaky ReLU Leaky ReLU with scale 0.01
 9 'MaxPool2' 2-D Max Pooling 2×1 max pooling with stride [2 1] and padding [0 0 0 0]
 10 'FC1' Fully Connected 256 fully connected layer
 11 'LeakyReLu3' Leaky ReLU Leaky ReLU with scale 0.01
 12 'DropOut1' Dropout 50% dropout
 13 'FC2' Fully Connected 80 fully connected layer
 14 'LeakyReLu4' Leaky ReLU Leaky ReLU with scale 0.01
 15 'DropOut2' Dropout 50% dropout
 16 'FC3' Fully Connected 5 fully connected layer
 17 'SoftMax' Softmax softmax
 18 'Output' Classification Output crossentropyex

Configure the training options to use the ADAM optimizer with a mini-batch size of 512. By default,
'ExecutionEnvironment' is set to 'auto', which uses a GPU for training if one is available.
Otherwise, trainNetwork (Deep Learning Toolbox) uses a CPU for training. To explicitly set the
execution environment, set 'ExecutionEnvironment' to one of 'cpu', 'gpu', 'multi-gpu', or
'parallel'.

if trainNow

 miniBatchSize = 512; %#ok<UNRCH>
 iterPerEpoch = floor(numTrainingFramesPerRouter*numTotalRouters/miniBatchSize);

 % Training options
 options = trainingOptions('adam', ...
 'MaxEpochs',5, ...
 'ValidationData',{xValFrames, yVal}, ...
 'ValidationFrequency',iterPerEpoch, ...
 'Verbose',false, ...
 'InitialLearnRate', 0.004, ...

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

6-127

 'LearnRateSchedule','piecewise', ...
 'LearnRateDropFactor', 0.5, ...
 'LearnRateDropPeriod', 2, ...
 'MiniBatchSize', miniBatchSize, ...
 'Plots','training-progress', ...
 'Shuffle','every-epoch');

 % Train the network
 simNet = trainNetwork(xTrainingFrames, yTrain, layers, options);
else
 % Load trained network (simNet), testing dataset (xTestFrames and
 % yTest) and the used MACAddresses (generatedMACAddresses)
 load('rfFingerprintingSimulatedDataTrainedNN_R2023a.mat',...
 'generatedMACAddresses',...
 'simNet',...
 'xTestFrames',...
 'yTest')
end

As the plot of the training progress shows, the network converges in about 2 epochs to almost 100%
accuracy. The final accuracy is 100%.

Classify test frames and calculate the final accuracy of the neural network.

% Obtain predicted classes for xTestFrames
yTestPred = classify(simNet,xTestFrames);

% Calculate test accuracy

6 End-to-End Simulation

6-128

testAccuracy = mean(yTest == yTestPred);
disp("Test accuracy: " + testAccuracy*100 + "%")

Test accuracy: 100%

Plot the confusion matrix for the test frames. As mentioned before, perfect classification accuracy is
achieved with the synthetic dataset.

figure
cm = confusionchart(yTest, yTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';

Detect Router Impersonator

Generate beacon frames with the known MAC addresses and one unknown MAC address. Generate a
new set of RF impairments and multipath channel. Since the impairments are all new, the RF
fingerprint for these frames should be classified as "Unknown". The frames with known MAC
addresses represent router impersonators while the frames with unknown MAC addresses are simply
unknown routers.

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

6-129

framesPerRouter = 4;
knownMACAddresses = generatedMACAddresses(1:numKnownRouters);

% Assign random impairments to each simulated radio within the previously
% defined ranges
for routerIdx = 1:numTotalRouters
 radioImpairments(routerIdx).PhaseNoise = rand*(phaseNoiseRange(2)-phaseNoiseRange(1)) + phaseNoiseRange(1);
 radioImpairments(routerIdx).DCOffset = rand*(dcOffsetRange(2)-dcOffsetRange(1)) + dcOffsetRange(1);
 radioImpairments(routerIdx).FrequencyOffset = fc/1e6*(rand*(freqOffsetRange(2)-freqOffsetRange(1)) + freqOffsetRange(1));
end
% Reset multipathChannel object to generate a new static channel
reset(multipathChannel)

% Run for all known routers and one unknown
for macIndex = 1:(numKnownRouters+1)

 beaconFrameConfig.Address2 = generatedMACAddresses(macIndex);

 % Generate Beacon frame bits
 beacon = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

 txWaveform = wlanWaveformGenerator(beacon, nonHTConfig);

 txWaveform = helperNormalizeFramePower(txWaveform);

 % Add zeros to account for channel delays
 txWaveform = [txWaveform; zeros(160,1)]; %#ok<AGROW>

 % Create an unseen multipath channel. In other words, create an unseen
 % RF fingerprint.
 reset(multipathChannel)

 frameCount= 0;
 while frameCount<framesPerRouter

 rxMultipath = multipathChannel(txWaveform);

 rxImpairment = helperRFImpairments(rxMultipath, radioImpairments(routerIdx), fs);

 rxSig = awgn(rxImpairment,SNR,0);

 % Detect the WLAN packet and return the received L-LTF signal using
 % rfFingerprintingNonHTFrontEnd object
 [payloadFull, cfgNonHT, rxNonHTData, chanEst, noiseVar, LLTF] = ...
 rxFrontEnd(rxSig);

 if payloadFull
 frameCount = frameCount+1;
 recBits = wlanNonHTDataRecover(rxNonHTData, chanEst, ...
 noiseVar, cfgNonHT, 'EqualizationMethod', 'ZF');

 % Decode and evaluate recovered bits
 mpduCfg = wlanMPDUDecode(recBits, cfgNonHT);

 % Separate I and Q and reshape for neural network
 LLTF= [real(LLTF), imag(LLTF)];
 LLTF = permute(reshape(LLTF,frameLength ,[] , 2, 1), [1 3 4 2]);

6 End-to-End Simulation

6-130

 ypred = classify(simNet, LLTF);

 if sum(contains(knownMACAddresses, mpduCfg.Address2)) ~= 0
 if categorical(convertCharsToStrings(mpduCfg.Address2))~=ypred
 disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED"))
 else
 disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint match"))
 end
 else
 disp(strcat("MAC Address ", mpduCfg.Address2," is not recognized, unknown device"))
 end
 end

 % Reset multipathChannel object to generate a new static channel
 reset(multipathChannel)
 end
end

MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 09C551658660 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address CDECF20C29CA is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address DF56A9E15405 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EDC4537D86B1 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device
MAC Address AAAAAAAAAAAA is not recognized, unknown device

Further Exploration

You can test the system under different channel and RF impairments by modifying the

• Multipath profile (PathDelays and AveragePathGains properties of Rayleigh channel object),
• Channel noise level (SNR input of awgn function),
• RF impairments (phaseNoiseRange, freqOffsetRange, and dcOffsetRange variables).

You can also modify the neural network structure by changing

• Convolutional layer parameters (filter size, number of filters, padding),
• Number of fully connected layers,
• Number of convolutional layers.

Appendix: Helper Functions

 Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation

6-131

function [impairedSig] = helperRFImpairments(sig, radioImpairments, fs)
% helperRFImpairments Apply RF impairments
% IMPAIREDSIG = helperRFImpairments(SIG, RADIOIMPAIRMENTS, FS) returns signal
% SIG after applying the impairments defined by RADIOIMPAIRMENTS
% structure at the sample rate FS.

% Apply frequency offset
fOff = comm.PhaseFrequencyOffset('FrequencyOffset', radioImpairments.FrequencyOffset, 'SampleRate', fs);

% Apply phase noise
phaseNoise = helperGetPhaseNoise(radioImpairments);
phNoise = comm.PhaseNoise('Level', phaseNoise, 'FrequencyOffset', abs(radioImpairments.FrequencyOffset));

impFOff = fOff(sig);
impPhNoise = phNoise(impFOff);

% Apply DC offset
impairedSig = impPhNoise + 10^(radioImpairments.DCOffset/10);

end

function [phaseNoise] = helperGetPhaseNoise(radioImpairments)
% helperGetPhaseNoise Get phase noise value
load('Mrms.mat','Mrms','MyI','xI');
[~, iRms] = min(abs(radioImpairments.PhaseNoise - Mrms));
[~, iFreqOffset] = min(abs(xI - abs(radioImpairments.FrequencyOffset)));
phaseNoise = -abs(MyI(iRms, iFreqOffset));
end

Selected Bibliography

[1] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis and K. Chowdhury, "ORACLE: Optimized
Radio clAssification through Convolutional neuraL nEtworks," IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, Paris, France, 2019, pp. 370-378.

6 End-to-End Simulation

6-132

Test a Deep Neural Network with Captured Data to Detect
WLAN Router Impersonation

This example shows how to train a radio frequency (RF) fingerprinting convolutional neural network
(CNN) with captured data. You capture wireless local area network (WLAN) beacon frames from real
routers using a software defined radio (SDR). You program a second SDR to transmit unknown
beacon frames and capture them. You train the CNN using these captured signals. You then program
a software-defined radio (SDR) as a router impersonator that transmits beacon signals with the media
access control (MAC) address of one of the known routers and use the CNN to identify it as an
impersonator.

For more information on router impersonation and validation of the network design with simulated
data, see the “Design a Deep Neural Network with Simulated Data to Detect WLAN Router
Impersonation” example.

Train with Captured Data

Collect a dataset of 802.11a/g/n/ac OFDM non-high throughput (non-HT) beacon frames from real
WLAN routers. As described in the “Design a Deep Neural Network with Simulated Data to Detect
WLAN Router Impersonation” example, only the legacy long training field (L-LTF) field present in
preambles are used as training units in order to avoid any data dependency.

In this example, the data was collected using the scenario depicted in the following figure. The
observer is a stationary ADALM-PLUTO radio. Known router data was collected as follows:

1 Set the observer's center frequency based on the WLAN channel used by the routers
2 Receive a beacon frame
3 Extract the L-LTF signal
4 Decode the MAC address to use as the label
5 Save the L-LTF signal together with its label
6 Repeat steps 2-5 to collect numFramesPerRouter frames from numKnownRouters routers.

Unknown router beacon frames are simulated using a mobile ADALM-PLUTO radio as a transmitter.
This radio repeatedly transmits beacon frames with a random MAC address. Unknown router data
was collected as follows:

1 Generate beacon frames with a random MAC address
2 Start transmitting the beacon frames repeatedly using the ADALM-PLUTO radio
3 Collect NUMFRAMES beacon frames
4 Extract the L-LTF signal
5 Save the L-LTF frames with label "Unknown"
6 Move the radio to another location
7 Repeat steps 3-6 to collect data from NUMLOC locations

This combined dataset of known and unknown routers is used to train the same DL model as in the
“Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation”
example.

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

6-133

This example downloads training data and trained network from https://www.mathworks.com/
supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar. If you do not have an
Internet connection, you can download the file manually on a computer that is connected to the
Internet and save to the same directory as the current example files. For privacy reasons, MAC
addresses have been anonymized in the downloaded data. To replicate the results of this example,
capture your own data as described in Appendix: Known and Unknown Router Data Collection on
page 6-142.

rfFingerprintingDownloadData('captured')

Starting download of data files from:
 https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar
Download and extracting files done

To run this example quickly, use the downloaded pretrained network. To train the network on your
computer, choose the "Train network now" option (i.e. set trainNow to true). Training this network
takes about 25 seconds with an NVIDIA® GeForce RTX 3080 GPU and about 2 minutes with an
Intel® Xeon W-2133 CPU @ 3.6 GHz.

trainNow = ; %#ok<*UNRCH>

This example uses data from four known routers. The dataset contains 3600 frames per router, where
90% is used as training frames and 10% is used as test frames.

numKnownRouters = 4;
numFramesPerRouter = 3600;
numTrainingFramesPerRouter = numFramesPerRouter * 0.9;
numTestFramesPerRouter = numFramesPerRouter * 0.1;
frameLength = 160;

6 End-to-End Simulation

6-134

https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar
https://www.mathworks.com/supportfiles/spc/RFFingerprinting/RFFingerprintingCapturedData_R2023a.tar

Preprocess Known and Unknown Router Data

Separate collected complex baseband data into its in-phase and quadrature components and reshape
it into a frameLength x 2 x 1 x numFramesPerRouter*numKnownRouters matrix. Repeat the same
process for the unknown router data. The following code uses previously collected and pre-processed
data. To use your own data, first collect data as described in Appendix: Known and Unknown Router
Data Collection on page 6-142. Copy the new data files named
rfFingerprintingCapturedDataUser.mat and
rfFingerprintingCapturedUnknownFramesUser.mat to the same directory as this example.
Then update the load commands to load these files.

if trainNow
 % Load known router data
 load('rfFingerprintingCapturedData.mat')

 % Create label vectors
 yTrain = repelem(MACAddresses, numTrainingFramesPerRouter);
 yTest = repelem(MACAddresses, numTestFramesPerRouter);

 % Separate between I and Q
 numTrainingSamples = numTrainingFramesPerRouter*numKnownRouters*frameLength;
 xTrainingFrames = xTrainingFrames(1:numTrainingSamples,1);
 xTrainingFrames = [real(xTrainingFrames), imag(xTrainingFrames)];
 numTestSamples = numTestFramesPerRouter*numKnownRouters*frameLength;
 xTestFrames = xTestFrames(1:numTestSamples,1);
 xTestFrames = [real(xTestFrames), imag(xTestFrames)];

 % Reshape dataset into an frameLength x 2 x 1 x numTrainingFramesPerRouter*numKnownRouters matrix
 xTrainingFrames = permute(...
 reshape(xTrainingFrames,[frameLength,numTrainingFramesPerRouter*numKnownRouters, 2, 1]),...
 [1 3 4 2]);

 % Reshape dataset into an frameLength x 2 x 1 x numTestFramesPerRouter*numKnownRouters matrix
 xTestFrames = permute(...
 reshape(xTestFrames,[frameLength,numTestFramesPerRouter*numKnownRouters, 2, 1]),...
 [1 3 4 2]);

 % Load unknown router data
 load('rfFingerprintingCapturedUnknownFrames.mat')

 % Number of training units
 numUnknownFrames = size(unknownFrames, 4);

 % Split data into 90% training and 10% test
 numUnknownTrainingFrames = floor(numUnknownFrames*0.9);
 numUnknownTest = numUnknownFrames - numUnknownTrainingFrames;

 % Add ADALM-PLUTO data into training and test datasets
 xTrainingFrames(:,:,:,(1:numUnknownTrainingFrames) + numTrainingFramesPerRouter*numKnownRouters) ...
 = unknownFrames(:,:,:, 1:numUnknownTrainingFrames);
 xTestFrames(:,:,:,(1:numUnknownTest) + numTestFramesPerRouter*numKnownRouters) ...
 = unknownFrames(:,:,:, (1:numUnknownTest) + numUnknownTrainingFrames);

 % Shuffle data
 vr = randperm(numKnownRouters*numTrainingFramesPerRouter+numUnknownTrainingFrames);
 xTrainingFrames = xTrainingFrames(:,:,:,vr);

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

6-135

 % Add "unknown" label and shuffle
 yTrain = [yTrain, repmat("Unknown", [1, numUnknownTrainingFrames])];
 yTrain = categorical(yTrain(vr));

 yTest = [yTest, repmat("Unknown", [1, numUnknownTest])];
 yTest = categorical(yTest);
end

Train the CNN

Use the same NN architecture and training options as in the training with simulated data example.

poolSize = [2 1];
strideSize = [2 1];
% Create network architecture
layers = [
 imageInputLayer([frameLength 2 1], 'Normalization', 'none', 'Name', 'Input Layer')

 convolution2dLayer([7 1], 50, 'Padding', [1 0], 'Name', 'CNN1')
 batchNormalizationLayer('Name', 'BN1')
 leakyReluLayer('Name', 'LeakyReLu1')
 maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool1')

 convolution2dLayer([7 2], 50, 'Padding', [1 0], 'Name', 'CNN2')
 batchNormalizationLayer('Name', 'BN2')
 leakyReluLayer('Name', 'LeakyReLu2')
 maxPooling2dLayer(poolSize, 'Stride', strideSize, 'Name', 'MaxPool2')

 fullyConnectedLayer(256, 'Name', 'FC1')
 leakyReluLayer('Name', 'LeakyReLu3')
 dropoutLayer(0.5, 'Name', 'DropOut1')

 fullyConnectedLayer(80, 'Name', 'FC2')
 leakyReluLayer('Name', 'LeakyReLu4')
 dropoutLayer(0.5, 'Name', 'DropOut2')

 fullyConnectedLayer(numKnownRouters+1, 'Name', 'FC3')
 softmaxLayer('Name', 'SoftMax')
 classificationLayer('Name', 'Output')
];

Configure the training options to use ADAM optimizer with a mini-batch size of 256. Use test frames
for validation since optimization of hyperparameters were done in [1] on page 6-143.

By default, ExecutionEnvironment is set to 'auto', which uses a GPU for training if one is
available. Otherwise, trainNetwork (Deep Learning Toolbox) uses the CPU for training. To explicitly
set the execution environment, set ExecutionEnvironment to one of 'cpu', 'gpu', 'multi-gpu',
or 'parallel'.

if trainNow
 miniBatchSize = 256;
 iterPerEpoch = floor((numTrainingFramesPerRouter*numKnownRouters + numUnknownTrainingFrames)/miniBatchSize);

 options = trainingOptions('adam', ...
 'MaxEpochs', 12, ...
 'ValidationData',{xTestFrames, yTest}, ...
 'ValidationFrequency', iterPerEpoch, ...
 'Verbose',false, ...

6 End-to-End Simulation

6-136

 'LearnRateSchedule','piecewise', ...
 'InitialLearnRate', 0.001, ...
 'LearnRateDropFactor', 0.5, ...
 'LearnRateDropPeriod', 2, ...
 'MiniBatchSize', miniBatchSize, ...
 'Plots','training-progress', ...
 'Shuffle', 'every-epoch');

 % Train the network
 capturedDataNet = trainNetwork(xTrainingFrames, yTrain, layers, options);
else
 load('rfFingerprintingCapturedDataTrainedNN_R2023a.mat','capturedDataNet','xTestFrames','yTest','MACAddresses')
end

The following plot shows the training progress of the network run on a computer with a single
NVIDIA GeForce RTX 3080 GPU, where the network converged in 12 epochs to 100% accuracy.

Generate the confusion matrix.

figure
yTestPred = classify(capturedDataNet,xTestFrames,ExecutionEnvironment='cpu');
cm = confusionchart(yTest, yTestPred);
cm.Title = 'Confusion Matrix for Test Data';
cm.RowSummary = 'row-normalized';

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

6-137

Test with SDR

Test the performance of the trained network on the class "Unknown". Generate beacon frames with
MAC addresses of the known routers and one unknown router. Transmit these frames using an
ADALM-PLUTO radio and receive using another ADALM-PLUTO radio. Since the channel and RF
impairments created between these two radios are different than the ones created between the real
routers and the observer, the neural network should classify all of the received signals as "Unknown".
If the received MAC address is a known one, then the system declares the source as a router
impersonator. If the received MAC address is an unknown one, then the system declares the source
as an unknown router. To perform this test, you need two ADALM-PLUTO radios for transmission and
reception. Also, you need to install Communication Toolbox Support Package for ADALM-PLUTO
Radio.

Waveform Generation

Generate a transmission waveform consisting of beacon frames with different MAC addresses. The
transmitter repeatedly transmits these WLAN frames. The receiver captures the WLAN frames and
determines if it is a router impersonator using the received MAC address and RF fingerprint detected
by the trained NN.

6 End-to-End Simulation

6-138

https://www.mathworks.com/hardware-support/adalm-pluto-radio.html
https://www.mathworks.com/hardware-support/adalm-pluto-radio.html

chanBW='CBW20'; % Channel Bandwidth
osf = 2; % Oversampling Factor
frameLength=160; % Frame Length in samples
% Create Beacon frame-body configuration object
frameBodyConfig = wlanMACManagementConfig;

% Create Beacon frame configuration object
beaconFrameConfig = wlanMACFrameConfig('FrameType', 'Beacon');
beaconFrameConfig.ManagementConfig = frameBodyConfig;

% Create interpolation and decimation objects
decimator = dsp.FIRDecimator('DecimationFactor',osf);

% Save known MAC addresses
knownMACAddresses = MACAddresses;
MACAddressesToSimulate = [MACAddresses, "ABCDEFABCDEF"];

% Create WLAN waveform with the MAC addresses of known routers and an
% unknown router
txWaveform = zeros(1540,5);
for i = 1:length(MACAddressesToSimulate)

 % Set MAC Address
 beaconFrameConfig.Address2 = MACAddressesToSimulate(i);

 % Generate Beacon frame bits
 [beacon, mpduLength] = wlanMACFrame(beaconFrameConfig, 'OutputFormat', 'bits');

 nonHTcfg = wlanNonHTConfig(...
 'ChannelBandwidth', chanBW,...
 "MCS", 1,...
 "PSDULength", mpduLength);
 txWaveform(:,i) = [wlanWaveformGenerator(beacon, nonHTcfg); zeros(20,1)];
end

txWaveform = txWaveform(:);

% Get center frequency for channel 153 in 5 GHz band
fc = wlanChannelFrequency(153, 5);
fs = wlanSampleRate(nonHTcfg);

txSig = resample(txWaveform,osf,1);

% Samples per frame in Burst Mode
spf = length(txSig)/length(MACAddressesToSimulate);

runSDRSection = false;
if helperIsPlutoSDRInstalled()
 radios = findPlutoRadio();
 if length(radios) >= 2
 runSDRSection = true;
 else
 disp("Two ADALM-PLUTO radios are needed. Skipping SDR test.")
 end
else
 disp("Communications Toolbox Support Package for Analog Devices ADALM-PLUTO Radio not found.")
 disp("Click Add-Ons in the Home tab of the MATLAB toolstrip to install the support package.")
 disp("Skipping SDR test.")

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

6-139

end

if runSDRSection
 % Set up PlutoSDR transmitter
 deviceNameSDR = 'Pluto';
 txGain = 0;
 txSDR = sdrtx(deviceNameSDR);
 txSDR.RadioID = 'usb:0';
 txSDR.BasebandSampleRate = fs*osf;
 txSDR.CenterFrequency = fc;
 txSDR.Gain = txGain;

 % Set up PlutoSDR Receiver
 rxSDR = sdrrx(deviceNameSDR);
 rxSDR.RadioID = 'usb:1';
 rxSDR.BasebandSampleRate = txSDR.BasebandSampleRate;
 rxSDR.CenterFrequency = txSDR.CenterFrequency;
 rxSDR.GainSource ='Manual';
 rxSDR.Gain = 30;
 rxSDR.OutputDataType = 'double';
 rxSDR.EnableBurstMode=true;
 rxSDR.NumFramesInBurst = 20;
 rxSDR.SamplesPerFrame = osf*spf;
end

L-LTF for Classification

The L-LTF sequence present in each beacon frame preamble is used as input units to the NN.
rfFingerprintingNonHTFrontEnd System object™ is used to detect the WLAN packets, perform
synchronization tasks and, extract the L-LTF sequences and data. In addition, the MAC address is
also decoded. In addition, the data is pre-processed and classified using the trained network.

if runSDRSection
 numLLTF = 20; % Number of L-LTF captured for Testing

 rxFrontEnd = rfFingerprintingNonHTFrontEnd('ChannelBandwidth', 'CBW20');

 disp("The known MAC addresses are:");
 disp(knownMACAddresses)

 % Set PlutoSDR to transmit repeatedly
 disp('Starting transmitter')
 transmitRepeat(txSDR, txSig);

 % Captured Frames counter
 numCapturedFrames = 0;

 disp('Starting receiver')
 % Loop until numLLTF frames are collected
 while numCapturedFrames < numLLTF

 % Receive data using PlutoSDR
 rxSig = rxSDR();

 rxSig = decimator(rxSig);

 % Perform front-end processing and payload buffering

6 End-to-End Simulation

6-140

 [payloadFull, cfgNonHT, rxNonHTData, chanEst, noiseVar, LLTF] = ...
 rxFrontEnd(rxSig);

 if payloadFull

 % Recover payload bits
 recBits = wlanNonHTDataRecover(rxNonHTData, chanEst, ...
 noiseVar, cfgNonHT, 'EqualizationMethod', 'ZF');

 % Decode and evaluate recovered bits
 [mpduCfg, ~, success] = wlanMPDUDecode(recBits, cfgNonHT);

 if success == wlanMACDecodeStatus.Success
 % Update counter
 numCapturedFrames = numCapturedFrames+1;

 % Create real-valued input
 LLTF = [real(LLTF), imag(LLTF)];
 LLTF = permute(reshape(LLTF,frameLength ,[] , 2, 1), [1 3 4 2]);

 ypred = classify(capturedDataNet, LLTF);

 if sum(contains(knownMACAddresses, mpduCfg.Address2)) ~= 0
 if categorical(convertCharsToStrings(mpduCfg.Address2))~=ypred
 disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED"))
 else
 disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint match"))
 end
 else
 disp(strcat("MAC Address ", mpduCfg.Address2," is not recognized, unknown device"));
 end
 end
 end
 end
 release(txSDR)
end

The known MAC addresses are:

 "71B63A2D0B83" "A3F8AC0F2253" "EF11D125044A" "F636A97E07E7"

Starting transmitter

Establishing connection to hardware. This process can take several seconds.
Waveform transmission has started successfully and will repeat indefinitely.
Call the release method to stop the transmission.

Starting receiver

Establishing connection to hardware. This process can take several seconds.

MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

6-141

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address 71B63A2D0B83 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address EF11D125044A is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

MAC Address ABCDEFABCDEF is not recognized, unknown device

MAC Address A3F8AC0F2253 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED
MAC Address F636A97E07E7 is known, fingerprint mismatch, ROUTER IMPERSONATOR DETECTED

Further Exploration

Capture data from your own routers as explained in Appendix: Known and Unknown Router Data
Collection, on page 6-142 train the neural network with this data, and test the performance of the
network.

Appendix: Helper Functions

• rfFingerprintingRouterDataCollection
• rfFingerprintingUnknownClassDataCollectionTx
• rfFingerprintingUnknownClassDataCollectionRx
• rfFingerprintingNonHTFrontEnd
• rfFingerprintingNonHTReceiver

Appendix: Known and Unknown Router Data Collection

Use rfFingerprintingRouterDataCollection to collect data from known (i.e. trusted) routers.
This function extracts L-LTF signals present in 802.11a/g/n/ac OFDM Non-HT beacons frames
transmitted from commercial 802.11 hardware. For more information see the “OFDM Beacon
Receiver Using Software-Defined Radio” (Communications Toolbox Support Package for USRP Radio)
example. L-LTF signals and corresponding router MAC addresses are used to train the RF
fingerprinting neural network. This method works best if the routers and their antennas are fixed and
hard to move unintentionally. For example, in most office environments, routers are mounted on the
ceiling. Follow these steps:

1 Connect an ADALM-PLUTO radio to your PC to use as the observer radio.
2 Place the radio in a central location where it can receive signals from as many routers as

possible. Fix the radio so that it does not move. If possible, place the observer radio on the
ceiling or high on a wall.

3 Determine the channel number of the routers. You can use a Wi-Fi® analyzer app on your phone
to find out the channel numbers.

4 Start data collection by running "rfFingerprintingRouterDataCollection(channel)"
where channel is the Wi-Fi channel number

5 Monitor the "max(abs(LLTF))" value. If it is above 1.2 or smaller than 0.01, adjust the gain of the
receiver using the GAIN input of rfFingerprintingRouterDataCollection function.

6 End-to-End Simulation

6-142

Use the helper functions rfFingerprintingUnknownClassDataCollectionTx and
rfFingerprintingUnknownClassDataCollectionRx to collect data from unknown routers.
These functions set two ADALM-PLUTO radios to transmit and receive L-LTF signals. The received
signals are combined with the known router signals to train the neural network. You need two
ADALM-PLUTO radios, preferably connected to two separate PCs. Follow these steps:

1 Connect an ADALM-PLUTO radio to a stationary PC to act as the unknown router.
2 Start transmissions by running "rfFingerprintingUnknownClassDataCollectionTx".
3 Connect another ADALM-PLUTO radio to a mobile PC to act as the observer.
4 Start data collection by running "rfFingerprintingUnknownClassDataCollectionRx". This

function by default collects 200 frames per location. Each location represents a different
unknown router.

5 When the function instructs you to move to a new location, move the observer radio to a new
location. By default, this function collects data from 10 locations.

6 If the observer does not receive any beacons or it rarely receives beacons, move the observer
closer to the transmitter.

7 Once the data collection is done, call "release(sdrTransmitter)" in the transmitting radio's
MATLAB® session.

Selected Bibliography

[1] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis and K. Chowdhury, "ORACLE: Optimized
Radio clAssification through Convolutional neuraL nEtworks," IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, Paris, France, 2019, pp. 370-378.

 Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation

6-143

802.11ad Packet Error Rate Simulation for Control PHY

This example shows how to measure the packet error rate of an IEEE® 802.11ad™ DMG control PHY
AWGN link using an end-to-end simulation.

Introduction

In this example an end-to-end simulation is used to determine the packet error rate for an 802.11ad
[1] control PHY link with an AWGN channel at a selection of SNR points. At each SNR point multiple
packets are transmitted through a noisy channel, de-spread and the PSDUs recovered. The PSDUs
are compared to those transmitted to determine the number of packet errors and hence the packet
error rate. The receiver assumes perfect synchronization when recovering data bits from the received
signal. The following diagram summarizes the processing for each packet.

This example also demonstrates how a parfor loop can be used instead of the for loop when
simulating each SNR point to speed up a simulation. The parfor function, as part of the Parallel
Computing Toolbox™, executes processing for each SNR in parallel to reduce the total simulation
time.

Waveform Configuration

An 802.11ad DMG control PHY transmission is simulated in this example. The DMG format
configuration object, wlanDMGConfig, contains the format-specific configuration of the transmission.
The properties of the object contain the configuration of the transmitted packet. In this example the
object is configured to generate a control PHY waveform. The MCS determines the PHY type used,
therefore the MCS must be set to 0 to use the control PHY.

% Create a format configuration object
cfgDMG = wlanDMGConfig;
cfgDMG.MCS = 0; % MCS 0 represents Control PHY
cfgDMG.PSDULength = 256; % PSDULength in bytes

Spectral Filtering

Spectral filtering is used to reduce the out-of-band spectral emissions due to the spread spectrum
characteristics of the transmitted waveform. In this example, the waveform is filtered through a
raised cosine filter both at the transmitter and receiver using the
comm.RaisedCosineTransmitFilter and comm.RaisedCosineReceiveFilter objects,
respectively. To meet the spectral mask requirements, the raised cosine filter is truncated to the
duration of eight symbols and the roll-off factor is set to 0.5.

% Define the pulse shaping filter characteristics
pulseShaping = true; % Enable pulse shaping
Nsym = 8; % Filter span in symbol durations
alpha = 0.5; % Roll-off factor
osps = 4; % Output samples per symbol

6 End-to-End Simulation

6-144

% Transmit pulse shaping filter
txFilter = comm.RaisedCosineTransmitFilter;
txFilter.RolloffFactor = alpha;
txFilter.FilterSpanInSymbols = Nsym;
txFilter.OutputSamplesPerSymbol = osps;
txFilter.Shape = 'Normal';

% Receive pulse shaping filter
rxFilter = comm.RaisedCosineReceiveFilter;
rxFilter.RolloffFactor = alpha;
rxFilter.DecimationFactor = osps;
rxFilter.InputSamplesPerSymbol = osps;
rxFilter.FilterSpanInSymbols = Nsym;
rxFilter.Shape = 'Normal';

Simulation Parameters

For each SNR point in the vector snrVec a number of packets are generated, passed through an
AWGN channel and demodulated to determine the packet error rate.

snrVec = -13.5:0.5:-10.5;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example will lead to a very short simulation. For meaningful results we
recommend increasing these numbers.

maxNumErrors = 10; % The maximum number of packet errors at an SNR point
maxNumPackets = 100; % The maximum number of packets at an SNR point

Processing SNR Points

For each SNR point a number of packets are tested and the packet error rate calculated.

For each packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 AWGN is added to the waveform.
3 The packet is received with perfect synchronization.
4 The header and data fields are extracted from the received waveform and are processed

together.
5 The recovered field is de-rotated by pi/2 and is de-spread.
6 The PSDU is recovered from the extracted field.

A parfor loop can be used to parallelize processing of the SNR points. To enable the use of parallel
computing for increased speed comment out the for statement and uncomment the parfor
statement below.

numSNR = numel(snrVec); % Number of SNR points
packetErrorRate = zeros(numSNR,1);

 802.11ad Packet Error Rate Simulation for Control PHY

6-145

indices = wlanFieldIndices(cfgDMG);

if ~strcmp(phyType(cfgDMG),'Control')
 error('This example only supports DMG Control PHY simulation');
end

%parfor isnr = 1:numSNR % Use 'parfor' to speed up the simulation
for isnr = 1:numSNR % Use 'for' to debug the simulation
 % Set random substream index per iteration to ensure that each
 % iteration uses a repeatable set of random numbers
 stream = RandStream('combRecursive','Seed',0);
 stream.Substream = isnr;
 RandStream.setGlobalStream(stream);

 % Noise power
 nVar = 10^(-snrVec(isnr)/10);
 numPacketErrors = 0;
 numPkt = 1; % Index of packet transmitted

 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet waveform
 psdu = randi([0 1],cfgDMG.PSDULength*8,1); % PSDULength in bytes
 tx = wlanWaveformGenerator(psdu,cfgDMG);

 % Transmitter filtering
 if pulseShaping
 % Append zero to compensate for filter group delay
 tx = txFilter([tx; zeros(Nsym,1)]);
 reset(txFilter);
 end

 % Add noise
 rx = awgn(tx,snrVec(isnr));

 % Receiver filtering
 if pulseShaping
 rx = rxFilter(rx);
 reset(rxFilter);
 end

 % Synchronize
 % The received signal is synchronized to the start of the packet by
 % compensating for a known delay due the spectral shaping filters
 if pulseShaping
 offset = Nsym;
 else
 offset = 0; %#ok<UNRCH>
 end

 % Process header and data field together
 rxHeaderDataField = rx(offset+(indices.DMGHeader(1):indices.DMGData(2)));

 % Apply pi/2 de-rotation and de-spread the received signal
 [rxSym,SF] = dmgControlDespread(rxHeaderDataField);

 % Recover the transmitted PSDU from DMG Data field. Scale the noise
 % power by the spreading factor
 dataDecode = wlanDMGDataBitRecover(rxSym,nVar/SF,cfgDMG);

6 End-to-End Simulation

6-146

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(psdu,dataDecode));
 numPacketErrors = numPacketErrors + packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at SNR point
 packetErrorRate(isnr) = numPacketErrors/(numPkt-1);
 disp(['SNR ' num2str(snrVec(isnr))...
 ' completed after ' num2str(numPkt-1) ' packets,'...
 ' PER: ' num2str(packetErrorRate(isnr))]);
end

Plot Packet Error Rate vs SNR Results
figure;
semilogy(snrVec,packetErrorRate,'-o');
grid on;
xlabel('SNR (dB)');
ylabel('PER');
legend('MCS 0');
title('PER for DMG Control-PHY, AWGN channel');

Further Exploration

The number of packets tested at each SNR point is controlled by two parameters: maxNumErrors
and maxNumPackets. For meaningful results, it is recommended that these values should be larger

 802.11ad Packet Error Rate Simulation for Control PHY

6-147

than those presented in this example. Increasing the number of packets simulated allows the PER
under different scenarios to be compared. As an example, the figure below was created by running
the example for a PSDULength of 256 bytes, maxNumErrors:1000 and maxNumPackets: 100000.

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

Local Functions

The following local function is used in this example:

• dmgControlDespread: De-spread the receive signal

function [y,SF] = dmgControlDespread(rx)
 SF = 32; % Spreading factor
 dataField = rx.*exp(-1i*pi/2*(0:size(rx,1)-1).'); % De-rotate symbols
 Ga = wlanGolaySequence(SF); % Generate Golay sequence
 y = (reshape(dataField,SF,length(dataField)/SF)'*Ga)/SF;
end

SNR -13.5 completed after 11 packets, PER: 1
SNR -13 completed after 12 packets, PER: 0.91667
SNR -12.5 completed after 53 packets, PER: 0.20755

6 End-to-End Simulation

6-148

SNR -12 completed after 100 packets, PER: 0.04
SNR -11.5 completed after 100 packets, PER: 0
SNR -11 completed after 100 packets, PER: 0
SNR -10.5 completed after 100 packets, PER: 0

 802.11ad Packet Error Rate Simulation for Control PHY

6-149

802.11ad Single Carrier Link with RF Beamforming in Simulink

This example shows how to model an IEEE 802.11ad™ single carrier link in Simulink® which
includes a phased array antenna with RF beamforming. This example requires the following products:

• WLAN Toolbox™ for baseband transmitter and receiver

• Phased Array System Toolbox™ for receive antenna array

• RF Blockset™ for RF receiver

Introduction

This model simulates an 802.11ad single carrier (SC) [1] link with RF beamforming. Multiple
packets are transmitted through free space, then RF beamformed, demodulated and the PLCP service
data units (PSDU) are recovered. The PSDUs are compared with those transmitted to determine the
packet error rate. The receiver performs packet detection, timing synchronization, carrier frequency
offset correction and unique word based phase tracking.

The MATLAB function block allows Simulink models to use MATLAB® functions. In this example, an
802.11ad SC link modeled in Simulink uses WLAN Toolbox functions called using MATLAB function
blocks. For an 802.11ad baseband simulation in MATLAB, see the example “802.11ad Packet Error
Rate Single Carrier PHY Simulation with TGay Channel” on page 5-2.

System Architecture

The system consists of:

• A baseband transmitter which generates a random PSDU and an 802.11ad SC packet.
• A free space channel.

6 End-to-End Simulation

6-150

• A receive antenna array which supports up to 16 elements. This module allows control of the array
geometry, number of elements in an array, operating frequency, and receiver direction.

• A 16 channel RF receiver module to process the RF signals. This receiver module includes low
noise amplifiers, phase shifters, Wilkinson 16:1 combiner, and a down-converter. This module
allows control of the beamforming direction used to calculate the corresponding phase shifts.

• A baseband receiver which recovers the transmitted PSDU by performing packet detection, time
and frequency synchronization, channel estimation, PSDU demodulation, and decoding.

The system diagnostics includes the display of equalized constellation and the obtained packet error
rate.

The following sections describe the transmitter and receiver in more detail.

Baseband Transmitter

The baseband transmitter block creates a random PSDU and encodes the bits to create a single
packet waveform based on the MCS and PSDU length values in the Model Parameters block. The
packet generator block uses the function wlanWaveformGenerator to encode a packet.

RF Receiver

The RF receiver consists of amplifiers, phase shifters, Wilkinson 16:1 combiner and is implemented in
superheterodyne fashion.

 802.11ad Single Carrier Link with RF Beamforming in Simulink

6-151

The phase shift applied to each element is calculated based on the beamforming direction. This is
provided by the user and indicates the direction of the main beam. The receiver maximizes the SNR
when the receiver's main beam points to the transmitter. Transmitter is omnidirectional and the

6 End-to-End Simulation

6-152

receiver direction (az,el) indicates the direction of incident signal. The scenario where the receiver
direction and the beamforming direction are different is shown. In this case, there will be a reduction
in the received signal power leading to high packet error rate (PER) and error vector magnitude
(EVM). The results section shows these values.

Baseband Receiver

The baseband receiver has two components: packet detection and packet recovery.

If a packet is detected, the packet recovery subsystem is enabled to process the detected packet.

The packet recovery subsystem processing consists of the following steps:

1 Frequency offset estimation and correction.
2 Symbol timing and channel frequency response estimation.
3 Noise power estimation.
4 Synchronization error checking. This determines whether the packet can be decoded or not.
5 Packet decoding.

 802.11ad Single Carrier Link with RF Beamforming in Simulink

6-153

In the packet decoder subsystem, the SC data field is extracted from the synchronized received
waveform. Then, the PSDU is recovered using the extracted field, channel, and noise power
estimates.

Results

Running the simulation displays the packet error rate. The model updates the PER after processing
each packet. The model also displays the equalized symbol constellation along with the EVM
measurement. Note that for statistically valid results, long simulation times are required.

By default, the main beam of the receive antenna array points towards the direction: azimuth = 0
deg. and elevation = 0 deg.

6 End-to-End Simulation

6-154

If you change the Receiver direction value in the receive antenna array towards a proximity null
in the array radiation, the EVM increases and the packets cannot be successfully decoded.

 802.11ad Single Carrier Link with RF Beamforming in Simulink

6-155

If you change the Beamforming direction value in the RF receiver such that the main beam
points towards the transmitter, the EVM improves and packets are successfully decoded.

6 End-to-End Simulation

6-156

Exploring the Example

• Try changing the signal to noise ratio (SNR) value in the Model Parameters block. Increasing SNR
leads to lower packet error rates and improved EVM of equalized symbols constellation. The SNR
specified is the signal to noise ratio at the input to the ADC, if a single receive chain is used. The
SNR accounts for free space path loss, thermal noise and the noise figure of RF components.

• You can change the array geometry and the number of elements in an array present in the receive
antenna array block. Increasing the number of antenna elements improves the EVM. The diversity
gain due to receiver antenna array can be observed in the equalized symbols constellation.

Appendix

This example uses the following helper functions:

• dmgCFOEstimate.m
• dmgPacketDetect.m
• dmgSingleCarrierFDE.m
• dmgSTFNoiseEstimate.m
• dmgTimingAndChannelEstimate.m
• dmgUniqueWordPhaseTracking.m

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

 802.11ad Single Carrier Link with RF Beamforming in Simulink

6-157

802.11p Packet Error Rate Simulation for a Vehicular Channel

This example shows how to measure the packet error rate (PER) of an IEEE® 802.11p™ link using an
end-to-end simulation with a Vehicle-to-Vehicle (V2V) fading channel and additive white Gaussian
noise. The PER performance of a receiver with and without channel tracking is compared. In a
vehicular environment (high Doppler), a receiver with channel tracking performs better.

Introduction

IEEE 802.11p [1] is an approved amendment to the IEEE 802.11™ standard to enable support for
wireless access in vehicular environments (WAVE). Using the half-clocked mode with a 10 MHz
channel bandwidth, it operates in 5.85-5.925 GHz bands to support applications for Intelligent
Transportation Systems (ITS) [2].

In this example, an end-to-end simulation is used to determine the packet error rate for an 802.11p
[1] link with a fading channel at a selection of SNR points with and without channel tracking. For
each SNR point, multiple packets are transmitted through a V2V channel, demodulated and the
PSDUs are recovered. The PSDUs are compared to those transmitted to determine the number of
packet errors. For each packet, packet detection, timing synchronization, carrier frequency offset
correction and phase tracking are performed at the receiver. For channel tracking, decision directed
channel estimation [3] is used to compensate for the high Doppler spread. The figure below shows
the processing chain with channel tracking.

Waveform Configuration

An 802.11p non-HT format transmission is simulated in this example. A non-HT format configuration
object contains the format specific configuration of the transmission. This object is created using the
wlanNonHTConfig function. In this example, the object is configured for a 10 MHz channel
bandwidth and QPSK rate 1/2 (MCS 2) operation.

% Link parameters
mcs = 2; % QPSK rate 1/2
psduLen = 500; % PSDU length in bytes

% Create a format configuration object for an 802.11p transmission
cfgNHT = wlanNonHTConfig;

6 End-to-End Simulation

6-158

cfgNHT.ChannelBandwidth = 'CBW10';
cfgNHT.PSDULength = psduLen;
cfgNHT.MCS = mcs;

Channel Configuration

The V2V radio channel model defines five scenarios to represent fading conditions within a vehicular
environment. In this example, 'Urban NLOS' [4] scenario is used. This corresponds to a scenario
with two vehicles crossing each other at an urban blind intersection with building and fences present
on the corners.

% Create and configure the channel
fs = wlanSampleRate(cfgNHT); % Baseband sampling rate for 10 MHz

chan = V2VChannel;
chan.SampleRate = fs;
chan.DelayProfile = 'Urban NLOS';

Simulation Parameters

For each SNR (dB) point in the vector snr a number of packets are generated, passed through a
channel and demodulated to determine the packet error rate.

snr = 15:5:30;

The number of packets tested at each SNR point is controlled by two parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each SNR point. When the
number of packet errors reaches this limit, the simulation at this SNR point is complete.

2 maxNumPackets is the maximum number of packets simulated at each SNR point. It limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example lead to a short simulation. For statistical meaningful results
these numbers should be increased.

maxNumErrors = 20; % The maximum number of packet errors at an SNR point
maxNumPackets = 200; % The maximum number of packets at an SNR point

% Set random stream for repeatability of results
s = rng(98);

Processing SNR Points

For each SNR point, a number of packets are tested and the packet error rate is calculated. For each
packet the following processing steps occur:

1 A PSDU is created and encoded to create a single packet waveform.
2 The waveform is passed through the channel. Different channel realizations are used for each

transmitted packet.
3 AWGN is added to the received waveform to create the desired average SNR per active

subcarrier after OFDM demodulation.
4 The per-packet processing includes packet detection, coarse carrier frequency offset estimation

and correction, symbol timing and fine carrier frequency offset estimation and correction.
5 The L-LTF is extracted from the synchronized received waveform. The L-LTF is OFDM

demodulated and initial channel estimates are obtained.

 802.11p Packet Error Rate Simulation for a Vehicular Channel

6-159

6 Channel tracking can be enabled using the switch enableChanTracking. If enabled, the
channel estimates obtained from L-LTF are updated per symbol using decision directed channel
tracking as presented in J. A. Fernandez et al in [3]. If disabled, the initial channel estimates
from L-LTF are used for the entire packet duration.

7 The non-HT Data field is extracted from the synchronized received waveform. The PSDU is
recovered using the extracted data field and the channel estimates and noise power estimate.

% Set up a figure for visualizing PER results
h = figure;
grid on;
hold on;
ax = gca;
ax.YScale = 'log';
xlim([snr(1), snr(end)]);
ylim([1e-3 1]);
xlabel('SNR (dB)');
ylabel('PER');
h.NumberTitle = 'off';
h.Name = '802.11p ';
title(['MCS ' num2str(mcs) ', V2V channel - ' chan.DelayProfile ' profile']);

% Simulation loop for 802.11p link
S = numel(snr);
per_LS = zeros(S,1);
per_STA = per_LS;
for i = 1:S
 enableChanTracking = true;
 % 802.11p link with channel tracking
 per_STA(i) = v2vPERSimulator(cfgNHT, chan, snr(i), ...
 maxNumErrors, maxNumPackets, enableChanTracking);

 enableChanTracking = false;
 % 802.11p link without channel tracking
 per_LS(i) = v2vPERSimulator(cfgNHT, chan, snr(i), ...
 maxNumErrors, maxNumPackets, enableChanTracking);

 semilogy(snr, per_STA, 'bd-');
 semilogy(snr, per_LS, 'ro--');
 legend('with Channel Tracking','without Channel Tracking')
 drawnow;
end

axis([10 35 1e-3 1])
hold off;

% Restore default stream
rng(s);

SNR 15 dB with channel tracking completed after 51 packets, PER: 0.41176
SNR 15 dB without channel tracking completed after 59 packets, PER: 0.35593
SNR 20 dB with channel tracking completed after 201 packets, PER: 0.069652
SNR 20 dB without channel tracking completed after 109 packets, PER: 0.19266
SNR 25 dB with channel tracking completed after 201 packets, PER: 0.0199
SNR 25 dB without channel tracking completed after 182 packets, PER: 0.11538
SNR 30 dB with channel tracking completed after 201 packets, PER: 0.0099502
SNR 30 dB without channel tracking completed after 201 packets, PER: 0.094527

6 End-to-End Simulation

6-160

For meaningful results maxNumErrors, maxNumPackets should be increased. The below plot
provides results for maxNumErrors: 1000 and maxNumPackets: 10000.

 802.11p Packet Error Rate Simulation for a Vehicular Channel

6-161

Further Exploration

Try changing the channel delay profile, the length of the packet or the data rate (mcs values) and
observe the performance of channel tracking. For some configurations channel tracking provides
little performance improvement. For a small number of OFDM symbols (small PSDU length or high
MCS), temporal averaging performed during decision directed channel tracking may not be effective.
The characteristics of the channel may also limit the performance for higher order modulation
schemes (mcs > 5).

Appendix

This example uses the following helper functions and objects:

• v2vPERSimulator.m
• V2VChannel.m

Selected Bibliography
1 IEEE Std 802.11p-2010: IEEE Standard for Information technology - Telecommunications and

information exchange between systems - Local and metropolitan area networks - Specific
requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, Amendment 6: Wireless Access in Vehicular Environments, IEEE, New York, NY,
USA, 2010.

2 ETSI, https://www.etsi.org/technologies/automotive-intelligent-transport.
3 J. A. Fernandez, D. D. Stancil and F. Bai, "Dynamic channel equalization for IEEE 802.11p

waveforms in the vehicle-to-vehicle channel," 2010 48th Annual Allerton Conference on

6 End-to-End Simulation

6-162

https://www.etsi.org/technologies/automotive-intelligent-transport

Communication, Control, and Computing (Allerton), Allerton, IL, 2010, pp. 542-551. doi: 10.1109/
ALLERTON.2010.5706954

4 P. Alexander, D. Haley and A. Grant, "Cooperative Intelligent Transport Systems: 5.9-GHz Field
Trials," in Proceedings of the IEEE, vol. 99, no. 7, pp. 1213-1235, July 2011.

 802.11p Packet Error Rate Simulation for a Vehicular Channel

6-163

802.11 Dynamic Rate Control Simulation

This example shows dynamic rate control by varying the Modulation and Coding scheme (MCS) of
successive packets transmitted over a frequency selective multipath fading channel.

Introduction

The IEEE® 802.11™ standard supports dynamic rate control by adjusting the MCS value of each
transmitted packet based on the underlying radio propagation channel. Maximizing link throughput,
in a propagation channel that is time varying due to multipath fading or movement of the surrounding
objects, requires dynamic variation of MCS. The IEEE 802.11 standard does not define any
standardized rate control algorithm (RCA) for dynamically varying the modulation rate. The
implementation of RCA is left open to the WLAN device manufacturers. This example uses a closed-
loop rate control scheme. A recommended MCS for transmitting a packet is calculated at the receiver
and is available at the transmitter without any feedback latency. In a real system this information
would be conveyed through a control frame exchange. The MCS is adjusted for each subsequent
packet in response to an evolving channel condition with noise power varying over time.

In this example, an IEEE 802.11ac™ [1] waveform consisting of a single VHT format packet is
generated using the wlanWaveformGenerator function. The waveform is passed through a TGac
channel and noise is added. The packet is synchronized and decoded to recover the PSDU. The SNR is
estimated and compared against thresholds to determine which MCS is suitable for transmission of
the next packet. This figure shows the processing for each packet.

Waveform Configuration

An IEEE 802.11ac VHT transmission is simulated in this example. The VHT waveform properties are
specified in a wlanVHTConfig configuration object. In this example the object is initially configured

6 End-to-End Simulation

6-164

for a 40 MHz channel bandwidth, single transmit antenna and QPSK rate-1/2 (MCS 1). The MCS for
the subsequent packets is changed by the algorithm throughout the simulation.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW40'; % 40 MHz channel bandwidth
cfgVHT.MCS = 1; % QPSK rate-1/2
cfgVHT.APEPLength = 4096; % APEP length in bytes

% Set random stream for repeatability of results
s = rng(21);

Channel Configuration

In this example a TGac N-LOS channel model is used with delay profile Model-D. For Model-D when
the distance between the transmitter and receiver is greater than or equal to 10 meters, the model is
NLOS. This is described further in wlanTGacChannel.

tgacChannel = wlanTGacChannel;
tgacChannel.DelayProfile = 'Model-D';
tgacChannel.ChannelBandwidth = cfgVHT.ChannelBandwidth;
tgacChannel.NumTransmitAntennas = 1;
tgacChannel.NumReceiveAntennas = 1;
tgacChannel.TransmitReceiveDistance = 20; % Distance in meters for NLOS
tgacChannel.RandomStream = 'mt19937ar with seed';
tgacChannel.Seed = 0;
tgacChannel.NormalizeChannelOutputs = false;

% Set the sampling rate for the channel
sr = wlanSampleRate(cfgVHT);
tgacChannel.SampleRate = sr;

Rate Control Algorithm Parameters

Typically RCAs use channel quality or link performance metrics, such as SNR or packet error rate, for
rate selection. The RCA presented in this example estimates the SNR of a received packet. On
reception, the estimated SNR is compared against a predefined threshold. If the SNR exceeds the
predefined threshold then a new MCS is selected for transmitting the next packet. The rcaAttack
and rcaRelease controls smooth rate changes to avoid changing rates prematurely. The SNR must
exceed the threshold + rcaAttack value to increase the MCS and must be under the threshold -
rcaRelease value to decrease the MCS. In this simulation rcaAttack and rcaRelease are set to
conservatively increase the MCS and aggressively reduce it. For the threshold values selected for
the scenario simulated in this example, a small number of packet errors are expected. These settings
may not be suitable for other scenarios.

rcaAttack = 1; % Control the sensitivity when MCS is increasing
rcaRelease = 0; % Control the sensitivity when MCS is decreasing
threshold = [11 14 19 20 25 28 30 31 35];
snrUp = [threshold inf]+rcaAttack;
snrDown = [-inf threshold]-rcaRelease;
snrInd = cfgVHT.MCS; % Store the start MCS value

Simulation Parameters

In this simulation numPackets packets are transmitted through a TGac channel, separated by a fixed
idle time. The channel state is maintained throughout the simulation, therefore the channel evolves
slowly over time. This evolution slowly changes the resulting SNR measured at the receiver. Since the

 802.11 Dynamic Rate Control Simulation

6-165

TGac channel changes very slowly over time, here an SNR variation at the receiver visible over a
short simulation can be forced using the walkSNR parameter to modify the noise power:

1 Setting walkSNR to true generates a varying SNR by randomly setting the noise power per
packet during transmission. The SNR walks between 14-33 dB (using the amplitude and
meanSNR variables).

2 Setting walkSNR to false fixes the noise power applied to the received waveform, so that channel
variations are the main source of SNR changes at the receiver.

numPackets = 100; % Number of packets transmitted during the simulation
walkSNR = true;

% Select SNR for the simulation
if walkSNR
 meanSNR = 22; % Mean SNR
 amplitude = 14; % Variation in SNR around the average mean SNR value
 % Generate varying SNR values for each transmitted packet
 baseSNR = sin(linspace(1,10,numPackets))*amplitude+meanSNR;
 snrWalk = baseSNR(1); % Set the initial SNR value
 % The maxJump controls the maximum SNR difference between one
 % packet and the next
 maxJump = 0.5;
else
 % Fixed mean SNR value for each transmitted packet. All the variability
 % in SNR comes from a time varying radio channel
 snrWalk = 22; %#ok<UNRCH>
end

% To plot the equalized constellation for each spatial stream set
% displayConstellation to true
displayConstellation = false;
if displayConstellation
 ConstellationDiagram = comm.ConstellationDiagram; %#ok<UNRCH>
 ConstellationDiagram.ShowGrid = true;
 ConstellationDiagram.Name = 'Equalized data symbols';
end

% Define simulation variables
snrMeasured = zeros(1,numPackets);
MCS = zeros(1,numPackets);
ber = zeros(1,numPackets);
packetLength = zeros(1,numPackets);

Processing Chain

The following processing steps occur for each packet:

1 A PSDU is created and encoded to create a single packet waveform.
2 A fixed idle time is added between successive packets.
3 The waveform is passed through an evolving TGac channel.
4 AWGN is added to the transmitted waveform to create the desired average SNR per active

subcarrier after OFDM demodulation.
5 This local function processPacket passes the transmitted waveform through the TGac channel,

performs receiver processing, and SNR estimation.

6 End-to-End Simulation

6-166

6 The VHT-LTF is extracted from the received waveform. The VHT-LTF is OFDM demodulated and
channel estimation is performed.

7 The VHT Data field is extracted from the synchronized received waveform.
8 Noise estimation is performed using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers.
9 The estimated SNR for each packet is compared against the threshold, the comparison is used to

adjust the MCS for the next packet.
10 The PSDU is recovered using the extracted VHT-Data field.

For simplicity, this example assumes:

1 Fixed bandwidth and antenna configuration for each transmitted packet.
2 There is no explicit feedback packet to inform the transmitter about the suggested MCS setting

for the next packet. The example assumes that this information is known to the transmitter
before transmitting the subsequent packet.

3 Fixed idle time of 0.5 milliseconds between packets.

for numPkt = 1:numPackets
 if walkSNR
 % Generate SNR value per packet using random walk algorithm biased
 % towards the mean SNR
 snrWalk = 0.9*snrWalk+0.1*baseSNR(numPkt)+rand(1)*maxJump*2-maxJump;
 end

 % Generate a single packet waveform
 txPSDU = randi([0,1],8*cfgVHT.PSDULength,1,'int8');
 txWave = wlanWaveformGenerator(txPSDU,cfgVHT,'IdleTime',5e-4);

 % Receive processing, including SNR estimation
 y = processPacket(txWave,snrWalk,tgacChannel,cfgVHT);

 % Plot equalized symbols of data carrying subcarriers
 if displayConstellation && ~isempty(y.EstimatedSNR)
 release(ConstellationDiagram);
 ConstellationDiagram.ReferenceConstellation = wlanReferenceSymbols(cfgVHT);
 ConstellationDiagram.Title = ['Packet ' int2str(numPkt)];
 ConstellationDiagram(y.EqDataSym(:));
 drawnow
 end

 % Store estimated SNR value for each packet
 if isempty(y.EstimatedSNR)
 snrMeasured(1,numPkt) = NaN;
 else
 snrMeasured(1,numPkt) = y.EstimatedSNR;
 end

 % Determine the length of the packet in seconds including idle time
 packetLength(numPkt) = y.RxWaveformLength/sr;

 % Calculate packet error rate (PER)
 if isempty(y.RxPSDU)
 % Set the PER of an undetected packet to NaN
 ber(numPkt) = NaN;
 else

 802.11 Dynamic Rate Control Simulation

6-167

 [~,ber(numPkt)] = biterr(y.RxPSDU,txPSDU);
 end

 % Compare the estimated SNR to the threshold, and adjust the MCS value
 % used for the next packet
 MCS(numPkt) = cfgVHT.MCS; % Store current MCS value
 increaseMCS = (mean(y.EstimatedSNR) > snrUp((snrInd==0)+snrInd));
 decreaseMCS = (mean(y.EstimatedSNR) <= snrDown((snrInd==0)+snrInd));
 snrInd = snrInd+increaseMCS-decreaseMCS;
 cfgVHT.MCS = snrInd-1;
end

Display and Plot Simulation Results

This example plots the variation of MCS, SNR, BER, and data throughput over the duration of the
simulation.

1 The MCS used to transmit each packet is plotted. When compared to the estimated SNR, you can
see the MCS selection is dependent on the estimated SNR.

2 The bit error rate per packet depends on the channel conditions, SNR, and MCS used for
transmission.

3 The throughput is maximized by varying the MCS according to the channel conditions. The
throughput is calculated using a sliding window of three packets. For each point plotted, the
throughput is the number of data bits, successfully recovered over the duration of three packets.
The length of the sliding window can be increased to further smooth the throughput. You can see
drops in the throughput either when the MCS decreases or when a packet error occurs.

% Display and plot simulation results
disp(['Overall data rate: ' num2str(8*cfgVHT.APEPLength*(numPackets-numel(find(ber)))/sum(packetLength)/1e6) ' Mbps']);
disp(['Overall packet error rate: ' num2str(numel(find(ber))/numPackets)]);

plotResults(ber,packetLength,snrMeasured,MCS,cfgVHT);

% Restore default stream
rng(s);

Overall data rate: 20.631 Mbps
Overall packet error rate: 0.03

6 End-to-End Simulation

6-168

Conclusion and Further Exploration

This example uses a closed-loop rate control scheme where knowledge of the MCS used for
subsequent packet transmission is assumed to be available to the transmitter.

In this example the variation in MCS over time due to the received SNR is controlled by the
threshold, rcaAttack and rcaRelease parameters. The rcaAttack and rcaRelease are used
as controls to smooth the rate changes, this is to avoid changing rates prematurely. Try changing the
rcaRelease control to two. In this case, the decrease in MCS is slower to react when channel
conditions are not good, resulting in higher BER.

Try setting the displayConstellation to true in order to plot the equalized symbols per received
packet, you can see the modulation scheme changing over time. Also try setting walkSNR to false in
order to visualize the MCS change per packet. Here the variability in SNR is only caused by the radio
channel, rather than the combination of channel and random walk.

Further exploration includes using an alternate RCA scheme, more realistic MCS variation including
changing number of space time streams, packet size and enabling STBC for subsequent transmitted
packets.

 802.11 Dynamic Rate Control Simulation

6-169

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

Local Functions

The following local functions are used in this example:

• processPacket: Add channel impairments and decode receive packet
• plotResults: Plot the simulation results

function Y = processPacket(txWave,snrWalk,tgacChannel,cfgVHT)
 % Pass the transmitted waveform through the channel, perform
 % receiver processing, and SNR estimation.

 chanBW = cfgVHT.ChannelBandwidth; % Channel bandwidth
 % Set the following parameters to empty for an undetected packet
 estimatedSNR = [];
 eqDataSym = [];
 noiseVarVHT = [];
 rxPSDU = [];

 % Get the OFDM info
 ofdmInfo = wlanVHTOFDMInfo('VHT-Data',cfgVHT);

 % Pass the waveform through the fading channel model
 rxWave = tgacChannel(txWave);

 % Account for noise energy in nulls so the SNR is defined per
 % active subcarrier
 packetSNR = snrWalk-10*log10(ofdmInfo.FFTLength/ofdmInfo.NumTones);

 % Add noise
 rxWave = awgn(rxWave,packetSNR);
 rxWaveformLength = size(rxWave,1); % Length of the received waveform

 % Recover packet
 ind = wlanFieldIndices(cfgVHT); % Get field indices
 pktOffset = wlanPacketDetect(rxWave,chanBW); % Detect packet

 if ~isempty(pktOffset) % If packet detected
 % Extract the L-LTF field for fine timing synchronization
 LLTFSearchBuffer = rxWave(pktOffset+(ind.LSTF(1):ind.LSIG(2)),:);

 % Start index of L-LTF field
 finePktOffset = wlanSymbolTimingEstimate(LLTFSearchBuffer,chanBW);

 % Determine final packet offset
 pktOffset = pktOffset+finePktOffset;

 if pktOffset<15 % If synchronization successful
 % Extract VHT-LTF samples from the waveform, demodulate and
 % perform channel estimation
 VHTLTF = rxWave(pktOffset+(ind.VHTLTF(1):ind.VHTLTF(2)),:);

6 End-to-End Simulation

6-170

 demodVHTLTF = wlanVHTLTFDemodulate(VHTLTF,cfgVHT);
 [chanEstVHTLTF,chanEstSSPilots] = wlanVHTLTFChannelEstimate(demodVHTLTF,cfgVHT);

 % Extract VHT data field
 vhtdata = rxWave(pktOffset+(ind.VHTData(1):ind.VHTData(2)),:);

 % Estimate the noise power in VHT data field
 noiseVarVHT = vhtNoiseEstimate(vhtdata,chanEstSSPilots,cfgVHT);

 % Recover equalized symbols at data carrying subcarriers using
 % channel estimates from VHT-LTF
 [rxPSDU,~,eqDataSym] = wlanVHTDataRecover(vhtdata,chanEstVHTLTF,noiseVarVHT,cfgVHT);

 % SNR estimation per receive antenna
 powVHTLTF = mean(VHTLTF.*conj(VHTLTF));
 estSigPower = powVHTLTF-noiseVarVHT;
 estimatedSNR = 10*log10(mean(estSigPower./noiseVarVHT));
 end
 end

 % Set output
 Y = struct(...
 'RxPSDU', rxPSDU, ...
 'EqDataSym', eqDataSym, ...
 'RxWaveformLength', rxWaveformLength, ...
 'NoiseVar', noiseVarVHT, ...
 'EstimatedSNR', estimatedSNR);

end

function plotResults(ber,packetLength,snrMeasured,MCS,cfgVHT)
 % Visualize simulation results

 figure('Outerposition',[50 50 900 700])
 subplot(4,1,1);
 plot(MCS);
 xlabel('Packet Number')
 ylabel('MCS')
 title('MCS selected for transmission')

 subplot(4,1,2);
 plot(snrMeasured);
 xlabel('Packet Number')
 ylabel('SNR')
 title('Estimated SNR')

 subplot(4,1,3);
 plot(find(ber==0),ber(ber==0),'x')
 hold on; stem(find(ber>0),ber(ber>0),'or')
 if any(ber)
 legend('Successful decode','Unsuccessful decode')
 else
 legend('Successful decode')
 end
 xlabel('Packet Number')
 ylabel('BER')
 title('Instantaneous bit error rate per packet')

 802.11 Dynamic Rate Control Simulation

6-171

 subplot(4,1,4);
 windowLength = 3; % Length of the averaging window
 movDataRate = movsum(8*cfgVHT.APEPLength.*(ber==0),windowLength)./movsum(packetLength,windowLength)/1e6;
 plot(movDataRate)
 xlabel('Packet Number')
 ylabel('Mbps')
 title(sprintf('Throughput over last %d packets',windowLength))

end

6 End-to-End Simulation

6-172

System-Level Simulation

7

Spatial Reuse with BSS Coloring in 802.11ax Network
Simulation

This example demonstrates how to simulate the impact of spatial reuse (SR) with basic service set
(BSS) coloring on the throughput of an IEEE® Std 802.11ax™ [1 on page 7-11] network by using
WLAN Toolbox™ and the Communications Toolbox™ Wireless Network Simulation Library.

Using this example, you can:

1 Create and configure an 802.11ax network topology consisting of four BSSs. Each BSS includes
an access point (AP) and a station (STA).

2 Assign BSS colors to each BSS and configure the overlapping BSS packet detect (OBSS PD)
threshold to simulate non-spatial reuse groups OBSS PD, as defined in IEEE Std 802.11ax-2021
[1 on page 7-11].

3 Simulate the network with and without BSS coloring to compare the throughput of each BSS.

IEEE 802.11ax OBSS PD-based Spatial Reuse Operation

In dense IEEE 802.11 networks, multiple BSSs can operate in the same channel due to the limited
spectrum. This results in an inefficient paradigm that causes network congestion and slowdown. To
optimize efficient reutilization of the frequency spectrum in dense network scenarios, IEEE Std
802.11ax-2021 [1 on page 7-11] introduced the OBSS PD-based SR operation. The OBSS PD-based
SR operation improves the network performance of BSSs operating in the same channel by increasing
the number of parallel transmissions. To increase the number of parallel transmissions, the standard
adjusts the clear channel assessment/carrier sense (CCA/CS) threshold for the detected OBSS
transmissions to a new value called the OBSS PD threshold. The OBSS PD threshold is higher than
the default CCA/CS threshold. This figure illustrates the SR operation in an OBSS. The network
topology consists of two BSSs, each containing an AP and an STA.

The default CCA/CS threshold (denoted by blue dashed lines) does not enable simultaneous
transmissions between AP1 and AP2. If the nodes in BSS-1 occupy the channel for transmission,

7 System-Level Simulation

7-2

transmission in BSS-2 is deferred. However, by optimally selecting the value of the OBSS PD
threshold (denoted by red dashed lines), both APs can simultaneously transmit to their corresponding
STAs. Therefore, the SR operation improves channel utilization, resulting in better throughput.

BSS Coloring

A receiver device identifies a frame as an intra-BSS frame if the color of the detected frame matches
with the BSS color of the receiver. If the receiver identifies the frame as an intra-BSS frame, the
transmitter and receiver belong to the same BSS and the receiver defers its transmission using the
CSMA/CA procedure. If the detected frame color is different from the BSS color, the frame is an inter-
BSS frame and the BSS coloring algorithm checks whether the received signal strength indicator
(RSSI) of the received frame is greater than the OBSS PD threshold. If the RSSI value of the received
frame is greater than the OBSS PD threshold, the device considers the wireless medium as busy and
defers its transmission. If the RSSI value of the received frame is less than the OBSS PD threshold,
the device ignores the received frame and continues contending for transmission.

 Spatial Reuse with BSS Coloring in 802.11ax Network Simulation

7-3

Check for Support Package Installation

Check if the Communications Toolbox™ Wireless Network Simulation Library support package is
installed. If the support package is not installed, MATLAB® returns an error with a link to download
and install the support package.

wirelessnetworkSupportPackageCheck;

Simulate 802.11ax Network with BSS Coloring

This example demonstrates the communication in an 802.11ax network that, by default, has four
BSSs, each containing one AP and one station.

Configure Simulation Parameters

Set the seed for the random number generator to 1. The seed value controls the pattern of random
number generation. The random number generated by the seed value impacts several processes
within the simulation, including backoff counter selection at the MAC layer and predicting packet
reception success at the physical layer. To improve the accuracy of your simulation results, after
running the simulation, you can change the seed value, run the simulation again and average the
results over multiple simulations.

rng(1,"combRecursive")

Specify the simulation time in seconds. To visualize a live state transition plot for all of the nodes, set
the showLiveStateTransitionPlot variable to true.

simulationTime = ;

showLiveStateTransitionPlot = ;

Configure the number of BSSs to create.

numBSS = ;

Initialize the wireless network simulator by using the wirelessNetworkSimulator object.

networkSimulator = wirelessNetworkSimulator.init;

Configure Nodes

Specify the BSS color for each BSS. A nonzero BSS color enables spatial reuse at the node. Assign a
unique BSS color in the device configuration of each AP. Association of STAs to the AP automatically

7 System-Level Simulation

7-4

configures the STAs with the BSS color of their corresponding APs. Set the OBSS PD threshold for
each BSS. This example uses the same OBSS PD threshold value for all the APs and STAs.

bssColor = (1:numBSS);
obssPDThreshold = -72*ones(1,numBSS);

Configure the positions of the AP and STA nodes.

apPositions = zeros(numBSS, 3);
staPositions = zeros(numBSS, 3);
for bssIdx = 1:numBSS
 apPositions(bssIdx, :) = [50*mod(bssIdx,2) 100*(ceil(bssIdx/2)-1) 5];
 staPositions(bssIdx, :) = [50*mod(bssIdx,2) 100*(ceil(bssIdx/2)-1) 0];
end

Visualize the node positions in a 3-D plot by using the hVisualizeNodePositions helper function.

hVisualizeNodePositions(apPositions, staPositions)

For each BSS, create two wlanDeviceConfig objects to initialize the configuration parameters for
the AP and the STA. Specify the Mode, BSSColor, OBSSPDThreshold, and DisableRTS properties
of each AP. Specify the Mode, OBSSPDThreshold, and DisableRTS properties of each STA. During
the association, each STA automatically adopts the same BSS color as its corresponding AP.

Create the AP and STA nodes by using the wlanNode object. Associate each STA to its corresponding
AP by using the associateStations object function. Configure the AP with continuous downlink
application traffic to its associated STA by using the FullBufferTraffic option of the
associateStations object function.

 Spatial Reuse with BSS Coloring in 802.11ax Network Simulation

7-5

for bssIndex = 1:numBSS
 % Configure AP and STA nodes
 apConfig = wlanDeviceConfig(Mode="AP",BSSColor=bssColor(bssIndex),OBSSPDThreshold=obssPDThreshold(bssIndex),DisableRTS=true);
 staConfig = wlanDeviceConfig(Mode="STA",OBSSPDThreshold=obssPDThreshold(bssIndex),DisableRTS=true);
 % Create AP and STA nodes
 apNodes(bssIndex) = wlanNode(Name=strcat("AP",num2str(bssIndex)),DeviceConfig=apConfig,Position=apPositions(bssIndex,:)); %#ok<*SAGROW>
 staNodes(bssIndex) = wlanNode(Name=strcat("STA",num2str(bssIndex)),DeviceConfig=staConfig,Position=staPositions(bssIndex,:));
 % Associate STAs with AP
 associateStations(apNodes(bssIndex),staNodes(bssIndex),FullBufferTraffic="DL")
end
nodes = [apNodes staNodes];

To ensure all the nodes are configured properly, use the hCheckWLANNodesConfiguration helper
function.

hCheckWLANNodesConfiguration(nodes)

For more information about node configuration parameters, see the “Get Started with WLAN System-
Level Simulation in MATLAB” on page 7-31 example.

Configure Wireless Channel

To create a random TGax fading channel between each node, this example uses the
hSLSTGaxMultiFrequencySystemChannel helper object.

Add the channel model to the wireless network simulator by using the addChannelModel object
function of the wirelessNetworkSimulator object.

channel = hSLSTGaxMultiFrequencySystemChannel(nodes);
addChannelModel(networkSimulator,channel.ChannelFcn)

Simulation

Add your nodes to the wireless network simulator.

addNodes(networkSimulator,nodes)

To visualize the state transitions at each node, use the hSimulationPlotViewer helper function.

hSimulationPlotViewer(showLiveStateTransitionPlot,nodes);

Run the simulation for the specified simulation time.

run(networkSimulator,simulationTime)

7 System-Level Simulation

7-6

Results

Retrieve the APP, MAC, and PHY statistics at each node by using the statistics object function.
Store the throughput of each AP, calculated by the simulation, in the perBSSThroughput variable.
Because only the APs are transmitters in this example, the throughput of each AP is the same as the
throughput of the corresponding BSS.

% Statistics
stats = statistics(nodes);
% Throughput of each AP with SR enabled
perBSSThroughputSR = zeros(1,numBSS);
for bssIndex = 1:numBSS
 perBSSThroughputSR(bssIndex) = (stats(bssIndex).MAC.TransmittedPayloadBytes*8)/(simulationTime*1e6);
end

Simulate 802.11ax Network Without BSS Coloring

In this section of the example, you remove the BSS coloring from the network and simulate it again.

 Spatial Reuse with BSS Coloring in 802.11ax Network Simulation

7-7

Initialize the wireless network simulator.

networkSimulator = wirelessNetworkSimulator.init;

Configure Nodes

To disable SR at each BSS, set the BSS color to 0.

bssColor = zeros(1,numBSS);

Specify the BSS color as 0 in the device configurations of the APs and the STAs. Create the AP and
STA nodes and associate each STA to its corresponding AP. Configure the AP with continuous
downlink application traffic to its associated STA.

for bssIndex = 1:numBSS
 % Configure AP and STA nodes
 apConfig = wlanDeviceConfig(Mode="AP",BSSColor=bssColor(bssIndex),DisableRTS=true);
 staConfig = wlanDeviceConfig(Mode="STA",DisableRTS=true);
 % Create AP and STA nodes
 apNodes(bssIndex) = wlanNode(Name=strcat("AP",num2str(bssIndex)),DeviceConfig=apConfig,Position=apPositions(bssIndex,:));
 staNodes(bssIndex) = wlanNode(Name=strcat("STA",num2str(bssIndex)),DeviceConfig=staConfig,Position=staPositions(bssIndex,:));
 % Associate STAs with AP
 associateStations(apNodes(bssIndex),staNodes(bssIndex),FullBufferTraffic="DL")
end
nodes = [apNodes staNodes];

To ensure all the nodes are configured properly, use the hCheckWLANNodesConfiguration helper
function.

hCheckWLANNodesConfiguration(nodes)

Configure Wireless Channel

Add the channel model to the wireless network simulator.

channel = hSLSTGaxMultiFrequencySystemChannel(nodes);
addChannelModel(networkSimulator,channel.ChannelFcn)

Simulation

Add your nodes to the wireless network simulator.

addNodes(networkSimulator,nodes)

To visualize the state transitions at each node, use the hSimulationPlotViewer helper function.

hSimulationPlotViewer(showLiveStateTransitionPlot,nodes);

Run the simulation for the specified simulation time.

run(networkSimulator,simulationTime)

7 System-Level Simulation

7-8

Results

Calculate the throughput of each AP and store it in the perBSSThroughputNoSR variable. Because
only the APs are transmitters in this example, the throughput of each AP is the same as the
throughput of the corresponding BSS.

% Statistics
stats = statistics(nodes);

% Throughput of each AP with SR disabled
perBSSThroughputNoSR = zeros(1,numBSS);
for bssIndex = 1:numBSS
 perBSSThroughputNoSR(bssIndex) = (stats(bssIndex).MAC.TransmittedPayloadBytes*8)/(simulationTime*1e6);
end

 Spatial Reuse with BSS Coloring in 802.11ax Network Simulation

7-9

Compare Throughput With and Without BSS Coloring at Each BSS

This plot shows the throughput of each BSS with and without BSS coloring. No BSS coloring indicates
the SR operation is disabled. Note that the throughput of each BSS improves considerably for the
modeled scenario by enabling the SR operation.

figure
bar([perBSSThroughputSR; perBSSThroughputNoSR]')
xlabel("BSS")
ylabel("Throughput (Mbps)")
title("Throughput of Each BSS")
legend(["Spatial Reuse Enabled" "Spatial Reuse Disabled"],Location="southoutside")

Appendix

The example uses these helper functions and objects.

• hCheckWLANNodesConfiguration — Check the node parameters configuration
• hSimulationPlotViewer — View the state transition and performance metric figures
• hSLSTGaxMultiFrequencySystemChannel — Return a system channel object
• hSLSTGaxAbstractSystemChannel — Return a channel manager object for abstracted PHY

layer
• hSLSTGaxSystemChannel — Return a channel manager object for full PHY layer
• hSLSTGaxSystemChannelBase — Return the base channel manager object

7 System-Level Simulation

7-10

• hVisualizeNodePositions — Visualize the node positions

References

1 Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Information
Technology--Telecommunications and Information Exchange between Systems Local and
Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-
Efficiency WLAN. IEEE 802.11ax-2021. IEEE, May 19, 2021. https://doi.org/10.1109/
IEEESTD.2021.9442429.

See Also
Functions
statistics

Objects
wlanNode | wirelessNetworkSimulator | wlanDeviceConfig

See Also

More About
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “802.11ax Multinode System-Level Simulation of Residential Scenario” on page 7-40
• “802.11ax Downlink OFDMA Multinode System-Level Simulation” on page 7-12
• “WLAN System-Level Simulation Statistics” on page 7-114

 Spatial Reuse with BSS Coloring in 802.11ax Network Simulation

7-11

https://doi.org/10.1109/IEEESTD.2021.9442429
https://doi.org/10.1109/IEEESTD.2021.9442429

802.11ax Downlink OFDMA Multinode System-Level Simulation

This example shows how to simulate a WLAN multinode downlink (DL) orthogonal frequency-division
multiple access (OFDMA) network consisting of an IEEE® 802.11ax™ [1 on page 7-20] access point
(AP) and four stations (STAs), by using WLAN Toolbox™ and the Communications Toolbox™ Wireless
Network Simulation Library.

Using this example, you can:

• Simulate DL OFDMA communication from the AP to STAs.
• Visualize the time spent by each node in Idle, Contention, Transmission, and Reception state.
• Capture the application layer (APP), medium access control layer (MAC) and physical layer (PHY)

statistics for each node.

The simulation results show performance metrics such as throughput, packet latency, and packet loss
captured at each node.

Additionally, you can further explore the example by performing these tasks.

• Throughput Comparison of OFDM and OFDMA on page 7-18
• Faster Execution Using Parallel Simulation Runs on page 7-19

OFDM and OFDMA

The IEEE 802.11ax standard introduces significant enhancements over the existing 802.11ac
standard [2 on page 7-20]. One of the key improvements is OFDMA, which is an extension of OFDM
digital modulation technology into a multiuser (MU) environment. The fundamental objective of
OFDMA is to efficiently use the available frequency space. OFDMA partitions the channel bandwidth
into multiple mutually exclusive sub-bands, called resource units (RUs). By partitioning the channel
bandwidth, multiple users can access the channel simultaneously. As a result, 802.11ax supports
concurrent transmissions of packets to multiple users.

For example, a conventional 20 MHz channel can be partitioned into a maximum of nine subchannels.
An 802.11ax AP can simultaneously transmit packets to nine 802.11ax STAs by using OFDMA. The
simultaneous transmission of frames reduces excessive contention overhead at the MAC layer and
minimizes the PHY layer preamble overhead. In OFDMA, the AP controls the allocation of RUs.

The 802.11ax standard specifies two types of OFDMA:

• DL OFDMA - The AP transmits packets to multiple STAs simultaneously using a different RU for
each STA.

• Uplink (UL) OFDMA - Multiple STAs transmit packets to an AP simultaneously, with each STA
using a different RU.

In this figure, the 802.11n/ac/ax AP transmits DL frames to four OFDM STAs independently over time.
The AP uses the entire channel bandwidth to communicate with a single OFDM STA. Similarly, an
OFDM STA uses the entire channel bandwidth to communicate with an 802.11n/ac/ax AP in an UL
OFDM transmission.

7 System-Level Simulation

7-12

This figure shows an OFDMA transmission. The 802.11ax AP partitions the channel bandwidth into
RUs for four OFDMA STAs on a continuous basis for simultaneous DL transmissions.

 802.11ax Downlink OFDMA Multinode System-Level Simulation

7-13

System-Level Simulation Scenario

The example creates, configures, and simulates this 802.11ax system-level scenario, consisting of one
AP and four associated STAs.

In the preceding figure:

1 AP transmits DL data to all the STAs simultaneously.
2 STAs respond with a UL acknowledgment frame upon receiving the DL data frames from the AP.

Check for Support Package Installation

Check if the Communications Toolbox™ Wireless Network Simulation Library support package is
installed. If the support package is not installed, MATLAB® returns an error with a link to download
and install the support package.

wirelessnetworkSupportPackageCheck

Configure Simulation Parameters

Set the seed for the random number generator to 1. The seed value controls the pattern of random
number generation. The random number generated by the seed value impacts several processes
within the simulation, including backoff counter selection at the MAC layer and predicting packet
reception success at the physical layer. To improve the accuracy of your simulation results after
running the simulation, you can change the seed value, run the simulation again, and average the
results over multiple simulations.

rng(1,"combRecursive")

Specify the simulation time in seconds. To visualize a live state transition plot for all of the nodes, set
the showLiveStateTransitionPlot variable to true.

simulationTime = ;

showLiveStateTransitionPlot = ;

This example uses abstracted MAC and PHY at each WLAN node because OFDMA is only supported
for abstracted MAC and PHY. For more information about abstracted MAC and PHY, see the “Get
Started with WLAN System-Level Simulation in MATLAB” on page 7-31 example.

PHYAbstractionMethod = ;

7 System-Level Simulation

7-14

Configure WLAN Scenario

Initialize the wireless network simulator by using the wirelessNetworkSimulator object.

networkSimulator = wirelessNetworkSimulator.init;

Nodes

Specify the number of nodes in the network. The example scenario consists of one AP and four
associated STAs.

numNodes = 5;
numSTAs = numNodes-1;

Specify the positions of the AP and STA nodes. The apPosition and staPositions vectors specify
the x-, y-, and z- Cartesian coordinates of the AP and STAs, respectively. Units are in meters.

apPosition = [0 0 0];
staPositions = [((30/numSTAs).*(1:numSTAs))' ((30/numSTAs).*(numSTAs:-1:1))' zeros(numSTAs,1)];

To model the scenario, create an AP and four STAs using wlanNode and wlanDeviceConfig objects.
The wlanDeviceConfig object enables you to specify the configuration parameters for the AP and
STAs. Create two WLAN device configuration objects, one for the AP and the other for the STAs. You
can use the same device configuration object to configure all the STAs. To configure an AP and a STA,
set the Mode property of the wlanDeviceConfig object to "AP" and "STA" respectively. Configure
the TransmissionFormat, MCS, DisableRTS, MPDUAggregationLimit, TransmitPower
properties of AP device configuration object. Note that AP and STA device configuration objects must
have the same value of MPDUAggregationLimit.

The example simulates these DL OFDMA frame exchange sequences.

• Enable DL MU frames followed by MU block ack request (BAR) trigger frame to simultaneously
solicit UL acknowledgment frames from multiple scheduled STAs.

• Optionally enables MU request to send request to send (RTS)/clear to send (CTS) exchanges by
specifying the DisableRTS property of the wlanDeviceConfig object to false.

This example uses the round-robin scheduling strategy to select STAs for each transmission. The
assignment of RUs is fixed for a given number of users and bandwidth.

accessPointCfg = wlanDeviceConfig(Mode="AP",TransmissionFormat="HE-MU-OFDMA", ... % AP device configuration
 MCS=8,DisableRTS=true, ...
 MPDUAggregationLimit=5, ...
 TransmitPower=20);
stationCfg = wlanDeviceConfig(Mode="STA",MPDUAggregationLimit=5); % STAs device configuration

To create one AP and four STA nodes from the specified configuration, use the wlanNode objects.
Specify the node names, node positions, and device configuration objects. You can use the wlanNode
object to create multiple nodes at a time by providing multiple node positions. Specify the PHY
abstraction method used by the AP and STAs. Configure the MACFrameAbstraction property to
indicate that the MAC frames are abstracted by the nodes.

accessPoint = wlanNode(Name="AP", ...
 Position=apPosition, ...
 DeviceConfig=accessPointCfg,...
 PHYAbstractionMethod=PHYAbstractionMethod, ...
 MACFrameAbstraction=true);

 802.11ax Downlink OFDMA Multinode System-Level Simulation

7-15

stations = wlanNode(Name="STA"+(1:numSTAs), ...
 Position=staPositions, ...
 DeviceConfig=stationCfg, ...
 PHYAbstractionMethod=PHYAbstractionMethod, ...
 MACFrameAbstraction=true);

Create a WLAN network consisting of an AP and four STAs.

nodes = [accessPoint stations];

To ensure all the nodes are configured properly, use the hCheckWLANNodesConfiguration helper
function.

hCheckWLANNodesConfiguration(nodes)

Association

Associate all the STAs to the AP by using the associateStations object function of the wlanNode
object.

associateStations(accessPoint,stations);

Application Traffic

Create networkTrafficOnOff objects to generate an On-Off application traffic pattern. Configure
the On-Off application traffic by specifying the application data rate and packet size. The number of
objects created is equal to the number of AP-STA pairs that have downlink traffic exchange in the
example. Add application traffic from the AP node to the corresponding STA node by using the
addTrafficSource object function and specifying the associated STA as the destination.

% Create four networkTrafficOnOff objects, one for each AP-STA pair in the scenario
for staID=1:numNodes-1
 trafficSource(staID) = networkTrafficOnOff(DataRate=100000,PacketSize=100); %#ok<SAGROW>
 addTrafficSource(accessPoint,trafficSource(staID),DestinationNode=stations(staID),AccessCategory=0);
end

Wireless Channel

To model a random TGax fading channel between each node, this example uses
hSLSTGaxMultiFrequencySystemChannel helper function. When you model a fading channel, the
probability of packet transmission success depends on these factors.

• Quality of the channel between an AP and STA for the selected RU
• Modulation and coding scheme (MCS)

In this example, the RU allocation does not consider the quality of the channel between the AP and
each STA. Therefore, if the channel quality between an AP and a STA is poor and the selected MCS is
high, packet loss is likely to occur.

Add the channel model to the wireless network simulator by using the addChannelModel object
function of the wirelessNetworkSimulator object.

channel = hSLSTGaxMultiFrequencySystemChannel(nodes);
addChannelModel(networkSimulator,channel.ChannelFcn)

7 System-Level Simulation

7-16

Simulation

Add your nodes to the wireless network simulator.

addNodes(networkSimulator,nodes)

To view the state transition and performance metrics plots, create a hSimulationPlotViewer
helper object. The simulation shows the plots for all the nodes configured in the simulation. To
visualize the state transitions and performance metrics of specific nodes, specify the corresponding
node objects as the second argument to the helper object.

viewerObj = hSimulationPlotViewer(showLiveStateTransitionPlot,nodes);

Run the network simulation for the specified simulation time. The runtime visualization shows the
time spent by the AP and the STA in Idle, Contention, Transmission, and Reception state.

run(networkSimulator,simulationTime);

 802.11ax Downlink OFDMA Multinode System-Level Simulation

7-17

Results

Retrieve the APP, MAC, and PHY statistics at each node by using the statistics object function of
the wlanNode object.

stats = statistics(nodes);

Plot the performance of each node by using the plotNetworkStats object function of the
hSimulationPlotViewer object. You can visualize these simulation plots.

• Throughput (in Mbps) at each transmitter (AP).
• Packet loss ratio (ratio of unsuccessful data transmissions to the total data transmissions) at each

transmitter (AP and STA).
• Average packet latency incurred at each receiver (STAs). The average packet latency shows the

average latency that each STA incurs to receive the downlink traffic from the AP.

plotNetworkStats(viewerObj,simulationTime)

Further Exploration

Throughput Comparison of OFDM and OFDMA

Generate throughput results of these OFDM and OFDMA transmission scenarios by using the
hCompareOFDMvsOFDMAThroughputs helper function.

• An AP serving a maximum of 140 STAs with OFDM configuration.

7 System-Level Simulation

7-18

• An AP serving a maximum of 140 STAs in an OFDMA configuration.

Plot the throughput results as a function of the number of DL STAs for OFDM and OFDMA
configurations. By default, the hCompareOFDMvsOFDMAThroughputs helper function plots the static
throughput values of OFDM and OFDMA transmissions. To reproduce the results, set the
plotStaticThroughputValues flag to false.

plotStaticThroughputValues = ;
hCompareOFDMvsOFDMAThroughputs(plotStaticThroughputValues);

The preceding plot shows the throughput comparison of OFDM and OFDMA. Because of the
simultaneous transmissions to multiple users, the throughput obtained by using OFDMA transmission
is greater than the throughput obtained by using OFDM transmission. Increasing the number of DL
STAs has minimal impact on the OFDM throughput.

Faster Execution Using Parallel Simulation Runs

If you want to run multiple simulations, you can speed up the simulations by enabling parallel
computing using the parfor loop. The parfor loop is an alternative to the for loop. The parfor loop

 802.11ax Downlink OFDMA Multinode System-Level Simulation

7-19

enables you to execute multiple simulation runs in parallel, thereby reducing the total execution time.
To use parfor, you need to install the “Parallel Computing Toolbox”™. For more information about
running multiple simulations by using parfor loop, see hCompareOFDMvsOFDMAThroughputs helper
function.

Appendix

The example uses these helpers:

• hCheckWLANNodesConfiguration — Check if the node parameters are configured correctly
• hSLSTGaxMultiFrequencySystemChannel — Return a system channel object and set the path

loss model
• hSLSTGaxAbstractSystemChannel — Return a channel object for abstracted PHY layer
• hSLSTGaxSystemChannel — Return a channel object for full PHY layer
• hSLSTGaxSystemChannelBase — Return the base channel object
• hSimulationPlotViewer — Plot the state transition and performance metrics figures
• hCompareOFDMvsOFDMAThroughputs — Retrieve throughput results for OFDM and OFDMA

transmission scenarios

References

1. Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Information
Technology--Telecommunications and Information Exchange between Systems Local and Metropolitan
Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency WLAN. IEEE
802.11ax-2021. IEEE, May 19, 2021. https://doi.org/10.1109/IEEESTD.2021.9442429.

2. Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Information
Technology--Telecommunications and Information Exchange between Systems Local and Metropolitan
Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. IEEE 802.11-2020. IEEE, February 26, 2021. https://doi.org/
10.1109/IEEESTD.2021.9363693.

See Also
Functions
statistics

Objects
wirelessNetworkSimulator | networkTrafficOnOff | wlanNode | wlanDeviceConfig

Related Examples
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “802.11ax Multinode System-Level Simulation of Residential Scenario” on page 7-40
• “Spatial Reuse with BSS Coloring in 802.11ax Network Simulation” on page 7-2
• “WLAN System-Level Simulation Statistics” on page 7-114

7 System-Level Simulation

7-20

https://doi.org/10.1109/IEEESTD.2021.9442429
https://doi.org/10.1109/IEEESTD.2021.9363693
https://doi.org/10.1109/IEEESTD.2021.9363693

Noncollaborative Bluetooth LE Coexistence with WLAN Signal
Interference

This example shows how to simulate Bluetooth low energy (LE) noncollaborative coexistence with
WLAN interference by using Bluetooth® Toolbox and Communications Toolbox™ Wireless Network
Simulation Library.

Using this example, you can:

• Create and configure a Bluetooth LE piconet with Central and Peripheral nodes.
• Analyze the performance of the Bluetooth LE network with and without WLAN interference.
• Visualize Bluetooth LE coexistence with WLAN interference for each Peripheral node by

implementing adaptive frequency hopping (AFH).
• Visualize the status (good or bad) and success rate (recent and cumulative) of each channel.

Additionally, you can use this example script to perform these tasks.

• Add WLAN Signal Using WLAN Toolbox Features on page 7-28
• Capture Bluetooth LE Packets to PCAP or PCAPNG file on page 7-28
• Add Custom Channel Classification on page 7-29
• Add Multiple Peripheral Nodes To A Piconet on page 7-29

Noncollaborative Bluetooth LE-WLAN Coexistence Scenario

Interference between Bluetooth and WLAN can be mitigated by two types of coexistence
mechanisms: collaborative and noncollaborative. Noncollaborative coexistence mechanisms do not
exchange information between two wireless networks. Collaborative coexistence mechanisms
collaborate and exchange network-related information between two wireless networks. These
coexistence mechanisms are applicable only after a WLAN or Bluetooth piconet is established and the
data is to be transmitted. This example demonstrates a noncollaborative AFH technique deployed
between Bluetooth LE and WLAN nodes to mitigate interference. AFH enables a Bluetooth node to
adapt to its environment by identifying fixed sources of WLAN interference and excluding them from
the list of available channels. For more information about coexistence between Bluetooth LE and
WLAN, see “Bluetooth-WLAN Coexistence” (Bluetooth Toolbox).

The Bluetooth LE piconet consists of one Bluetooth LE Central node and one Peripheral node. The
scenario consists of two WLAN nodes, which introduce interference in the Bluetooth LE signal. The
example simulates this coexistence scenario between Bluetooth LE and WLAN.

 Noncollaborative Bluetooth LE Coexistence with WLAN Signal Interference

7-21

Check for Support Package Installation

Check if the 'Communications Toolbox Wireless Network Simulation Library' support package is
installed.

wirelessnetworkSupportPackageCheck

Configure Coexistence Scenario

Set the seed for the random number generator to 1 to ensure repeatability of results. The seed value
controls the pattern of random number generation. Initializing the random number generator using
the same seed assures the same result. For high-fidelity simulation results, change the seed value and
average the results over multiple simulations.

rng(1,"twister");

Create a wireless network simulator object.

networkSimulator = wirelessNetworkSimulator.init;

Create a Bluetooth LE node and set the role to "central" by using the bluetoothLENode
(Bluetooth Toolbox) object. Set the properties of the Central node.

centralNode = bluetoothLENode("central", ...
 Name="Central Node", ...
 Position=[5 0 0], ... % x-, y-, and z-coordinates in meters
 TransmitterPower=0); % In dBm

7 System-Level Simulation

7-22

Create a Bluetooth LE node and set the role to "peripheral". Set the properties of the Peripheral
node.

peripheralNode = bluetoothLENode("peripheral", ...
 Name="Peripheral Node", ...
 Position=[10 0 0], ... % x-, y-, and z-coordinates in meters
 TransmitterPower=0); % In dBm

Create a Bluetooth LE configuration object. Set the connection interval, active period, connection
offset, and access address for each connection. Connection events are established for every
connection interval duration throughout the simulation. The connection offset specifies the offset
from the beginning of the connection interval. The active period specifies the active communication
period for a connection after which connection event is ended. Assign the configuration to the Central
and Peripheral nodes.

connectionConfig = bluetoothLEConnectionConfig;
connectionConfig.ConnectionInterval = 0.01; % In seconds
connectionConfig.ActivePeriod = 0.01; % In seconds
connectionConfig.ConnectionOffset = 0; % In seconds
connectionConfig.AccessAddress = "12345678"; % In hexadecimal
configureConnection(connectionConfig,centralNode,peripheralNode);

Configure Application Traffic

Create a networkTrafficOnOff object to generate an On-Off application traffic pattern. Configure
the On-Off application traffic pattern at the Central and Peripheral nodes by specifying the
application data rate, packet size, and on state duration. Attach application traffic from the Central to
the Peripheral nodes.

central2PeripheralTrafficSource = networkTrafficOnOff(...
 OnTime=Inf, ... % In seconds
 DataRate=150, ... % In Kbps
 PacketSize=100, ... % In bytes
 GeneratePacket=true);
addTrafficSource(centralNode,central2PeripheralTrafficSource, ...
 DestinationNode=peripheralNode.Name);

Attach application traffic from the Peripheral to the Central nodes.

peripheral2CentralTrafficSource = networkTrafficOnOff(...
 OnTime=Inf, ...
 DataRate=150, ...
 PacketSize=100, ...
 GeneratePacket=true);
addTrafficSource(peripheralNode,peripheral2CentralTrafficSource, ...
 DestinationNode=centralNode.Name);

Configure WLAN Signal Interference

To add WLAN signal interference, set the enableWLANInterference flag to true.

enableWLANInterference = ;

Specify the number of WLAN nodes and their positions in the network. The WLAN nodes introduce
interference in the network and do not model the PHY and MAC behavior.

 Noncollaborative Bluetooth LE Coexistence with WLAN Signal Interference

7-23

Set the properties of the WLAN nodes. Specify the source of WLAN interference by using one of these
options.

• "Generated" - To add a WLAN toolbox™ signal to interfere with the communication between
Bluetooth LE nodes, select this option and uncomment the WLAN configuration object code.

• "BasebandFile" - To add a WLAN signal from a baseband file with the.bb extension to interfere
with the communication between Bluetooth nodes, select this option. You can specify the file name
using the BasebandFile input argument. If you do not specify a baseband file, the example adds
the default file, WLANHESUBandwidth20 to the WLAN signal.

To determine the path loss of the channel during the transmission, the example uses the distance
between the nodes. Create WLAN nodes to introduce interference in the network by using the
helperInterferingWLANNode helper object.

if enableWLANInterference

 wlanInterferenceSource = ;
 numWLANNodes = 2;
 wlanNodePositions = [0 7 5; 10 8 5]; % x-, y-, and z-coordinates in meters
 wlanCenterFrequency = [2.412e9; 2.442e9]; % Center frequency (in Hz) based on the channel of operation
 wlanNodes = helperInterferingWLANNode.empty(0,numWLANNodes);
 for wlanIdx=1:numWLANNodes
 wlanNodeObj = helperInterferingWLANNode(...
 WaveformSource=wlanInterferenceSource, ...
 Position=wlanNodePositions(wlanIdx,:), ...
 Name="WLAN node", ...
 TransmitterPower=15, ... % In dBm
 CenterFrequency=wlanCenterFrequency(wlanIdx), ...
 Bandwidth = 20e6, ... % In Hz
 SignalPeriodicity=0.0029); % In seconds
%
% % To add interfering signal generated using WLAN Toolbox, uncomment this code
% if strcmpi(wlanInterferenceSource, "Generated")
% wlanNodeObj.FormatConfig = wlanHTConfig("ChannelBandwidth","CBW20");
% end
%
 wlanNodes(wlanIdx) = wlanNodeObj;
 end
end

Create Bluetooth LE Network

Create a Bluetooth LE network consisting of the Bluetooth LE nodes and any WLAN interfering
nodes.

bluetoothNodes = [centralNode peripheralNode];

Add the Bluetooth and any WLAN nodes to the simulator.

addNodes(networkSimulator,bluetoothNodes);
if enableWLANInterference
 addNodes(networkSimulator,wlanNodes);
end

Configure Visualization and Channel Classification

Specify the simulation time by using the simulationTime variable. Enable the option to visualize
the Bluetooth LE coexistence with WLAN and the channel hopping sequence.

7 System-Level Simulation

7-24

simulationTime = 2; % In seconds

To implement channel classification, enable the enableChannelClassification variable.

enableChannelClassification = ;

Schedule Channel Classification

The Bluetooth LE signal transmitted in a particular channel suffers interference from the WLAN
signals. The Bluetooth LE node pseudorandomly selects a new channel from the channel map by
using frequency hopping. This example classifies the channels using the AFH algorithm only when
you enable channel classification. For each Peripheral node, the Central node periodically classifies
the channels as "good" or "bad" based on the total packets received and failed in that channel. If the
current number of good channels is less than the preferred number of good channels, the example
reclassifies all the bad channels as good channels.

This example implements channel classification by periodic evaluation of the packet failures of each
channel. For each Peripheral node, create a channel classifier by using the
helperBluetoothChannelClassification helper object and schedule the action for each
Peripheral node. You can schedule a custom action in the simulation by using the scheduleAction
object function of the wirelessNetworkSimulator object. For example, each time you call the
simulator, you can schedule an action to plot the state transitions. Specify the function handle, input
argument, absolute simulation time, and periodicity of the callback.

Create a function handle to classify the channel by using the classifyChannels object function of
the helperBluetoothChannelClassification helper object. Schedule the channel classification
for the periodicity of the callback by using the scheduleAction object function of the
wirelessNetworkSimulator object. To perform a channel classification for the Peripheral nodes,
create and schedule the action for individual destinations.

if enableChannelClassification
 classifierObj = helperBluetoothChannelClassification(...
 centralNode,peripheralNode,PERThreshold=50);
 classifyFcn = @(varargin) classifierObj.classifyChannels;
 userData = []; % User data needed to be passed to the callback function
 callAt = 0; % Absolute simulation time, in seconds
 periodicity = 125e-3; % In seconds

 scheduleAction(networkSimulator,classifyFcn,userData,callAt,periodicity); % Schedule channel classification
end

Visualization

Enable the option to visualize the Bluetooth coexistence with WLAN and the channel hopping
sequence.

enableVisualization = ;

Initialize coexistence visualization by using the helperVisualizeCoexistence helper object. To
update the channel map for each channel map update and the status of the channel for each packet
reception, listeners are created by using the addlistener function of the
helperVisualizeCoexistence helper object. When the ChannelMapUpdated and
PacketReceptionEnded events are triggered at the Central node object, the listener listens to
those events.

 Noncollaborative Bluetooth LE Coexistence with WLAN Signal Interference

7-25

if enableVisualization && enableWLANInterference
 coexistenceVisualization = helperVisualizeCoexistence(simulationTime,bluetoothNodes,wlanNodes);
elseif enableVisualization && ~enableWLANInterference
 coexistenceVisualization = helperVisualizeCoexistence(simulationTime,bluetoothNodes);
end

Simulation Results

Run the simulation for the specified time and display the channel hopping sequence in the Bluetooth
LE channels and the interference due to the WLAN signals. Visualize the state transitions, status
(good or bad), and success rate (recent and cumulative) of each channel. The recent success rate
represents the cumulative success rates between each channel classification interval. The overall
success rate represents the cumulative success rate throughout the simulation time.

run(networkSimulator,simulationTime);

Custom channel model is not added. Using free space path loss (fspl) model as the default channel model.

Retrieve Statistics

The example simulation generates these results.

1 A run-time plot for each Central-Peripheral connection pair showing the status (good or bad) and
success rate (recent and cumulative) of each channel.

7 System-Level Simulation

7-26

2 Channel classification statistics showing the total number of packets received and corrupted and
the status (good or bad) of each channel for each classification interval.

3 A bar plot for each peripheral showing the packet loss ratio and throughput between each
channel map update.

4 Application layer (APP), link layer (LL), and PHY statistics for Central and Peripheral nodes.

Retrieve the channel classification statistics by using the classificationStatistics object
function of the helperVisualizeCoexistence helper object. Use this object function to visualize
the packet loss ratio and throughput between each channel map update for every Peripheral node.

if enableChannelClassification && enableVisualization
 bluetoothLEChannelStats = classificationStatistics(coexistenceVisualization,centralNode,peripheralNode);
end

Channel classification statistics of Peripheral Node
 Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 8 Channel 9 Channel 10 Channel 11 Channel 12 Channel 13 Channel 14 Channel 15 Channel 16 Channel 17 Channel 18 Channel 19 Channel 20 Channel 21 Channel 22 Channel 23 Channel 24 Channel 25 Channel 26 Channel 27 Channel 28 Channel 29 Channel 30 Channel 31 Channel 32 Channel 33 Channel 34 Channel 35 Channel 36
 _________ _________ _________ _________ _________ _________ _________ _________ _________ _________ __________

 ChannelStatusTillClassification_1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 RxPacketsTillClassification_1 0 3 2 2 2 5 1 2 1 3 7 3 3 3 1 5 1 0 3 0 4 0 1 3 3 6 3 3 3 3 6 3 3 3 3 5 3
 RxPacketsFailedTillClassification_1 0 2 2 2 2 4 1 2 1 0 0 0 0 0 1 4 1 0 2 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ChannelStatusTillClassification_2 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 RxPacketsTillClassification_2 0 4 2 3 2 5 4 2 2 3 7 6 3 6 1 5 3 0 5 0 4 3 1 6 3 6 3 3 6 3 6 3 3 7 3 5 3
 RxPacketsFailedTillClassification_2 0 3 2 3 2 4 3 2 2 0 0 0 0 0 1 4 2 0 4 0 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ChannelStatusTillClassification_3 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 RxPacketsTillClassification_3 0 4 5 3 5 5 4 3 2 6 7 6 6 6 1 5 3 0 5 1 4 3 1 6 7 6 6 3 6 6 6 6 3 7 6 5 6
 RxPacketsFailedTillClassification_3 0 3 4 3 3 4 3 3 2 0 0 0 0 0 1 4 2 0 4 1 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ChannelStatusTillClassification_4 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 RxPacketsTillClassification_4 2 4 5 3 5 5 4 3 2 9 11 6 6 6 1 5 3 2 5 1 4 3 4 6 7 9 6 9 6 6 9 6 6 7 6 8 6
 RxPacketsFailedTillClassification_4 2 3 4 3 3 4 3 3 2 0 0 0 0 0 1 4 2 2 4 1 3 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ChannelStatusTillClassification_5 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 RxPacketsTillClassification_5 2 4 5 6 5 5 4 3 4 9 11 13 6 9 1 5 4 2 5 1 4 5 4 9 7 9 12 9 9 6 9 6 6 10 6 8 6
 RxPacketsFailedTillClassification_5 2 3 4 5 3 4 3 3 4 0 0 0 0 0 1 4 3 2 4 1 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ChannelStatusTillClassification_6 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 RxPacketsTillClassification_6 2 4 5 6 5 5 4 6 4 15 11 16 9 9 2 5 4 2 5 3 4 5 4 9 11 9 12 9 9 9 9 9 6 10 9 8 9
 RxPacketsFailedTillClassification_6 2 3 4 5 3 4 3 5 4 0 0 0 0 0 2 4 3 2 4 3 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ChannelStatusTillClassification_7 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 RxPacketsTillClassification_7 4 4 5 6 5 5 4 6 4 15 15 16 12 9 2 5 4 2 5 3 4 5 4 9 11 11 12 12 13 9 11 9 9 14 9 13 9
 RxPacketsFailedTillClassification_7 3 3 4 5 3 4 3 5 4 0 0 0 0 0 2 4 3 2 4 3 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ChannelStatusTillClassification_8 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 RxPacketsTillClassification_8 4 4 5 6 5 5 4 6 4 17 17 21 17 13 4 5 4 2 5 5 4 5 4 12 14 11 13 12 16 13 11 15 9 17 12 13 12
 RxPacketsFailedTillClassification_8 3 3 4 5 3 4 3 5 4 0 0 0 0 0 3 4 3 2 4 5 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ChannelStatusTillClassification_9 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 RxPacketsTillClassification_9 4 4 5 6 5 5 4 6 4 27 26 30 25 16 4 5 4 4 5 5 4 5 4 17 17 18 15 17 18 15 15 18 20 21 14 18 16
 RxPacketsFailedTillClassification_9 3 3 4 5 3 4 3 5 4 0 0 0 0 0 3 4 3 4 4 5 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 ChannelStatusTillSimulationEnds 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 RxPacketsTillSimulationEnds 4 4 5 6 5 5 4 6 4 27 28 30 25 17 4 5 4 4 5 5 4 5 4 18 17 18 15 17 20 15 15 18 20 23 14 18 19
 RxPacketsFailedTillSimulationEnds 3 3 4 5 3 4 3 5 4 0 0 0 0 0 3 4 3 4 4 5 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Noncollaborative Bluetooth LE Coexistence with WLAN Signal Interference

7-27

Get the Central and Peripheral node statistics by using the statistics (Bluetooth Toolbox) object
function.

centralStats = statistics(centralNode);
peripheralStats = statistics(peripheralNode);

The Bluetooth LE Central and Peripheral nodes avoid the interfered channels through channel
classification and communicate with each other to avoid packet loss. The success rate is calculated at
each Bluetooth LE channel. This example concludes that for high transmit power of a WLAN channel,
the success rate of the respective Bluetooth LE channel is low. Therefore, these channels are not used
for communication between Bluetooth LE Central and Peripheral nodes.

Further Exploration

Add WLAN Signal Using WLAN Toolbox Features

To add a WLAN signal using WLAN Toolbox features, set the value of WaveformSource parameter of
the wlanNodeObj or a helperInterferingWLANNode object to "Generated". Uncomment the
code lines in the WLAN Signal Interference on page 7-23 section. You can modify the WLAN packet
format configuration object in the FormatConfig property of wlanNodeObj and assign it to the
WLAN node. Set the bandwidth of the signal based on the assigned configuration object.

Capture Bluetooth LE Packets to PCAP or PCAPNG file

To capture the packets at any Bluetooth nodes in a packet capture (PCAP) or packet capture next
generation (PCAPNG) file, add the following code before you run the simulation. The packets are

7 System-Level Simulation

7-28

captured into individual PCAP/PCAPNG files for each of the Bluetooth LE node. The name of the
PCAP file for a node is in the format: <NodeName_NodeID_yyyyMMdd_HHmmss>.<file_extension>.
Node ID is a unique number generated internally for each node. Node ID is a read-only property for
all the nodes. Use the helperPacketCapture object and specify the Bluetooth LE nodes to capture.
Specify the file extension as "pcap" or "pcapng".

% clear packetCaptureObj; % Clear the packet capture handle if exists
% packetCaptureObj = helperPacketCapture(bluetoothNodes,"pcap");

Add Custom Channel Classification

To add a custom channel classification algorithm, perform these steps:

1 Create a custom channel classification object.
2 Classify the channels by passing the classification function at an absolute simulation time or at a

particular periodicity by using the scheduleAction object function.
3 Instead of scheduling or calling the classification at certain simulation time instances, you can

implement a custom channel classification algorithm by classifying the channels based on the
status of the received packets.

4 Update the status of the received packets by using the updateRxStatus object function.
5 Classify the channels based on the status of the received packets by using the

classifyChannels object function.

Add Multiple Peripheral Nodes To A Piconet

To add multiple Peripheral nodes to a piconet, perform these steps:

1 Create Peripheral nodes by using the bluetoothLENode (Bluetooth Toolbox) object, setting the
Role property to "peripheral".

2 Create a connection configuration by using the bluetoothLEConnectionConfig (Bluetooth
Toolbox) object.

3 Assign the configuration to the Central node and each Peripheral node.
4 Generate and add application traffic at the Central and Peripheral nodes.
5 Create a Bluetooth BR network with all the nodes.
6 Enable channel classification at the Central node for each of the Peripheral nodes by creating an

array of classifier objects.
7 Schedule the action for each of the Peripheral nodes. Retrieve the statistics for all Peripheral

nodes.

Appendix

The example uses these helper functions:

• helperInterferingWLANNode - Configure and simulate interfering WLAN node
• helperVisualizeCoexistence - Visualize the coexistence model
• helperBluetoothChannelClassification - Create an object to classify the Bluetooth LE channels
• helperPacketCapture - Create an object to capture Bluetooth LE packets as PCAP/PCAPNG file

References

 Noncollaborative Bluetooth LE Coexistence with WLAN Signal Interference

7-29

1 Bluetooth Technology Website. “Bluetooth Technology Website | The Official Website of Bluetooth
Technology.” Accessed September 20, 2022. https://www.bluetooth.com/

2 Bluetooth Special Interest Group (SIG). "Bluetooth Core Specification". Version 5.3. https://
www.bluetooth.com/

3 IEEE® Standard 802.15.2™. "Coexistence of Wireless Personal Area Networks with Other
Wireless Devices Operating in Unlicensed Frequency Bands". IEEE Recommended Practice for
Information technology - Telecommunications and information exchange between systems - Local
and metropolitan area networks - Specific requirements; IEEE Computer Society

4 IEEE P802.11ax™/D3.1. "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN". Draft Standard for
Information technology - Telecommunications and information exchange between systems Local
and metropolitan area networks - Specific requirements; LAN/MAN Standards Committee of the
IEEE Computer Society

5 IEEE Std 802.11™. "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications". IEEE Standard for Information technology - Telecommunications and information
exchange between systems - Local and metropolitan area networks - Specific requirements;
LAN/MAN Standards Committee of the IEEE Computer Society

See Also

Related Examples
• “PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence” on page 1-2

7 System-Level Simulation

7-30

https://www.bluetooth.com/
https://www.bluetooth.com/
https://www.bluetooth.com/

Get Started with WLAN System-Level Simulation in MATLAB

This example shows how to model a WLAN network consisting of an IEEE® 802.11ax™ [1 on page 7-
38] access point (AP) and a station (STA) by using WLAN Toolbox™ and the Communications
Toolbox™ Wireless Network Simulation Library.

Using this example, you can:

• Simulate a multinode WLAN system by configuring the application layer (APP), medium access
control (MAC), and physical layer (PHY) parameters at each node.

• Model uplink and downlink communication between an AP and a STA.
• Switch between the abstracted and full models of MAC and PHY layers.
• Visualize the time spent by each node in Idle, Contention, Transmission, and Reception state.
• Capture the APP, MAC, and PHY statistics for each node.

The simulation results show performance metrics such as throughput, latency, and packet loss.

Additionally, you can use this example script to generate, configure and add external application
traffic patterns such as On-Off, Video, Voice, and FTP to the WLAN nodes. For more information, see
Further Exploration on page 7-37.

WLAN System-Level Simulation

This example shows you how to model a WLAN network with uplink and downlink communication
between an AP and a STA. This figure illustrates the example network.

This figure shows the example workflow.

To confirm compliance with the IEEE 802.11 standard [2 on page 7-38], the features in this example
are validated with Box-3 and Box-5 scenarios specified in the TGax evaluation methodology [3 on

 Get Started with WLAN System-Level Simulation in MATLAB

7-31

page 7-38]. The network throughputs that are calculated for TGax simulation scenarios [4 on page 7-
38] are validated against the published calibration results from the TGax Task Group.

Check for Support Package Installation

Check if the Communications Toolbox™ Wireless Network Simulation Library support package is
installed. If the support package is not installed, MATLAB® returns an error with a link to download
and install the support package.

wirelessnetworkSupportPackageCheck

Configure Simulation Parameters

Set the seed for the random number generator to 1. The seed value controls the pattern of random
number generation. The random number generated by the seed value impacts several processes
within the simulation, including backoff counter selection at the MAC layer and predicting packet
reception success at the physical layer. To improve the accuracy of your simulation results after
running the simulation, you can change the seed value, run the simulation again, and average the
results over multiple simulations.

rng(1,"combRecursive")

Specify the simulation time in seconds. To visualize a live state transition plot for all of the nodes, set
the showLiveStateTransitionPlot variable to true.

simulationTime = ;

showLiveStateTransitionPlot = ;

At the transmitter and receiver, modeling full MAC processing involves complete MAC frame
generation at the MAC layer. Similarly, modeling full PHY processing involves complete operations
related to waveform transmission and reception through a fading channel. When simulating large
networks, full MAC and PHY processing is computationally expensive.

In the abstracted MAC, the node does not generate or decode any frames at the MAC layer. Similarly,
in the abstracted PHY, the node does not generate or decode any waveforms at the PHY. MAC and
PHY abstraction enable you to minimize the complexity and runtime of system-level simulations. For
more information on PHY abstraction, see the “Physical Layer Abstraction for System-Level
Simulation” on page 7-90 example.

This table shows you how to switch between the abstracted and full MAC or PHY by configuring the
values of the MACFrameAbstraction and PHYAbstractionMethod properties of wlanNode object.

7 System-Level Simulation

7-32

If you set the PHYAbstractionMethod to tgax-evaluation-methodology, the PHY estimates
the performance of a link with the TGax channel model by using an effective signal-to-interference-
plus-noise ratio (SINR) mapping. Alternatively, if you set the PHYAbstractionMethod to tgax-mac-
calibration the PHY assumes a packet failure on interference without actually calculating the link
performance. To use the full PHY, set the value of PHYAbstractionMethod to none.

MACFrameAbstraction = ;

PHYAbstractionMethod = ;

Configure WLAN Scenario

Initialize the wireless network simulator by using the wirelessNetworkSimulator object.

networkSimulator = wirelessNetworkSimulator.init;

Nodes

The wlanDeviceConfig object enables you to set the configuration parameters for the AP and STA.
Create two WLAN device configuration objects, one for the AP and the other for the STA. Specify the
operating mode, modulation and coding scheme, and transmission power (in dBm) for the AP and
STA.

accessPointCfg = wlanDeviceConfig(Mode="AP",MCS=2,TransmitPower=15); % AP device configuration
stationCfg = wlanDeviceConfig(Mode="STA",MCS=2,TransmitPower=15); % STA device configuration

To create an AP node and a STA node from the specified WLAN device configurations, use wlanNode
objects. Specify the name and position of the AP and the STA. Specify the PHY abstraction method
used for the AP and the STA. Configure the MACFrameAbstraction property of the wlanNode object
to indicate if the MAC frames are abstracted by the nodes.

accessPoint = wlanNode(Name="AP", ...
 Position=[10 0 0], ...
 DeviceConfig=accessPointCfg, ...
 PHYAbstractionMethod=PHYAbstractionMethod, ...

 Get Started with WLAN System-Level Simulation in MATLAB

7-33

 MACFrameAbstraction=MACFrameAbstraction);

station = wlanNode(Name="STA", ...
 Position=[20 0 0], ...
 DeviceConfig=stationCfg, ...
 PHYAbstractionMethod=PHYAbstractionMethod, ...
 MACFrameAbstraction=MACFrameAbstraction);

Create a WLAN network consisting of the AP and the STA.

nodes = [accessPoint station];

To ensure all the nodes are configured properly, use the hCheckWLANNodesConfiguration helper
function.

hCheckWLANNodesConfiguration(nodes)

Association and Application Traffic

Associate the STA to the AP by using the associateStations object function of the wlanNode
object. To configure uplink and downlink application traffic between the AP and STA, use the
FullBufferTraffic argument of the associateStations object function.

associateStations(accessPoint,station,FullBufferTraffic="on");

Wireless Channel

To model a random TGax fading channel between each node, this example uses the
hSLSTGaxMultiFrequencySystemChannel helper object. Add the channel model to the wireless
network simulator by using the addChannelModel object function of the
wirelessNetworkSimulator object.

channel = hSLSTGaxMultiFrequencySystemChannel(nodes);
addChannelModel(networkSimulator,channel.ChannelFcn)

Export WLAN MAC Frames to PCAP or PCAPNG File

The example demonstrates packet capture at both AP and STA nodes. Set the capturePacketsFlag
flag to true to capture the packets exchanged during the simulation. The packet capture (PCAP) or
packet capture next generation (PCAPNG) file (.pcap or .pcapng, respectively) is a widely used packet
capture file format to perform packet analysis. The packets are captured into a PCAP file in this
example.

capturePacketsFlag = ;

Create a hExportWLANPackets helper object to generate PCAP files. Specify the node objects at
which you want to capture the packets. The helper object captures transmitted and received packets
at each of these nodes and generates a PCAP file for each node. If you want to capture the packets in
a PCAPNG file, specify the string "pcapng" as the second argument to the object function call. Note
that capturing packets is possible only when MACFrameAbstraction flag is set to false.

if capturePacketsFlag
 clear capturePacketsObj; % Clear existing helper object
 capturePacketsObj = hExportWLANPackets(nodes);
end

7 System-Level Simulation

7-34

You can visualize and analyze the PCAP or PCAPNG file by using a third-party packet analyzer tool
such as Wireshark.

Simulation

Add your nodes to the wireless network simulator.

addNodes(networkSimulator,nodes)

To view the state transition and performance metrics plots, create a hSimulationPlotViewer
helper object. The simulation shows the plots for all the nodes configured in the simulation. To
visualize the state transitions and performance metrics of a specific node, specify the corresponding
node object as the second argument to the helper object.

viewerObj = hSimulationPlotViewer(showLiveStateTransitionPlot,nodes);

Run the network simulation for the specified simulation time. The runtime visualization shows the
time spent by the AP and the STA in Idle, Contention, Transmission, and Reception state.

run(networkSimulator,simulationTime);

 Get Started with WLAN System-Level Simulation in MATLAB

7-35

Results

Retrieve the APP, MAC, and PHY statistics at each node by using the statistics object function of
the wlanNode object.

stats = statistics(nodes);

Plot the performance of each node by using the plotNetworkStats object function of the
hSimulationPlotViewer object. You can visualize these simulation plots.

• Throughput (in Mbps) at each transmitter (AP and STA).
• Packet loss ratio (ratio of unsuccessful data transmissions to the total data transmissions) at each

transmitter (AP and STA).
• Average packet latency incurred at each receiver (AP and STA). The average packet latency shows

the average latency that the STA incurs to receive the downlink traffic from the AP and the
average latency that the AP incurs to receive uplink traffic from the STA.

plotNetworkStats(viewerObj,simulationTime)

7 System-Level Simulation

7-36

Because the hExportWLANPackets helper object does not overwrite the existing PCAP or PCAPNG
file, deleting the PCAP objects used in this simulation.

if capturePacketsFlag
 delete(capturePacketsObj.PCAPObjList);
end

Further Exploration

Configure External Application Traffic

To generate and add external application traffic pattern (On-Off, Video, Voice, and FTP) to the WLAN
nodes, modify the traffic configuration in this example. To generate an On-Off application traffic,
create two networkTrafficOnOff objects for downlink and uplink traffic, respectively. Configure
these objects by specifying the application data rate and packet size.

% trafficSourceDL = networkTrafficOnOff(DataRate=100000,PacketSize=1500);
% trafficSourceUL = networkTrafficOnOff(DataRate=100000,PacketSize=1500);

Attach downlink application traffic from the AP node to the STA node by using the
addTrafficSource object function of the wlanNode object. Similarly, attach uplink application
traffic from the STA node to the AP node.

% addTrafficSource(accessPoint,trafficSourceDL,DestinationNode=station,AccessCategory=0);
% addTrafficSource(station,trafficSourceUL,DestinationNode=accessPoint,AccessCategory=0);

To generate video, voice, and FTP application traffic, use the networkTrafficVideoConference,
networkTrafficVoIP, and networkTrafficFTP objects, respectively.

 Get Started with WLAN System-Level Simulation in MATLAB

7-37

Appendix

This example uses these helpers:

• hCheckWLANNodesConfiguration — Check if the node parameters are configured correctly
• hExportWLANPackets — Capture MAC frames and write them into a PCAP/PCAPNG file
• hSLSTGaxMultiFrequencySystemChannel — Return a system channel object
• hSLSTGaxAbstractSystemChannel — Return a channel object for abstracted PHY layer
• hSLSTGaxSystemChannel — Return a channel object for full PHY layer
• hSLSTGaxSystemChannelBase — Return the base channel object
• hSimulationPlotViewer — Plot the state transition and performance metrics figures

References

1 Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Information
Technology--Telecommunications and Information Exchange between Systems Local and
Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-
Efficiency WLAN. IEEE 802.11ax-2021. IEEE, May 19, 2021. https://doi.org/10.1109/
IEEESTD.2021.9442429.

2 Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Information
Technology--Telecommunications and Information Exchange between Systems Local and
Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. IEEE 802.11-2020. IEEE, February 26,
2021. https://doi.org/10.1109/IEEESTD.2021.9363693.

3 Institute of Electrical and Electronics Engineers (IEEE). 11ax Evaluation Methodology. IEEE
802.11-14/0571r12. IEEE, January 2016.

4 Institute of Electrical and Electronics Engineers (IEEE). TGax Simulation Scenarios. IEEE
802.11-14/0980r16. IEEE, 2015.

See Also
Functions
statistics

Objects
wirelessNetworkSimulator | networkTrafficOnOff | wlanNode | wlanDeviceConfig

See Also

More About
• “Create, Configure, and Simulate an 802.11ax Mesh Network” on page 7-121
• “Simulate an 802.11ax Hybrid Mesh Network” on page 7-127
• “Simulate a Multiband 802.11ax Network” on page 7-124
• “802.11ax Downlink OFDMA Multinode System-Level Simulation” on page 7-12

7 System-Level Simulation

7-38

https://doi.org/10.1109/IEEESTD.2021.9442429
https://doi.org/10.1109/IEEESTD.2021.9442429
https://doi.org/10.1109/IEEESTD.2021.9363693

• “WLAN System-Level Simulation Statistics” on page 7-114

 Get Started with WLAN System-Level Simulation in MATLAB

7-39

802.11ax Multinode System-Level Simulation of Residential
Scenario

This example shows how to model performance of an IEEE® 802.11ax™ [1 on page 7-48] network in
a residential scenario by using WLAN Toolbox™ and the Communications Toolbox™ Wireless Network
Simulation Library.

Using this example, you can:

• Simulate a residential scenario by configuring the network and channel parameters.
• Simulate a multinode WLAN system and capture the network-related statistics.
• Simulate the network by switching between the abstracted and full models of medium access

control (MAC) and physical layer (PHY).

The simulation results show performance metrics such as throughput, latency, and packet loss.

Additionally, you can use this example script to export WLAN MAC frames to a PCAP or PCAPNG file.
For more information, see Further Exploration on page 7-47.

Residential Scenario

This example demonstrates a system-level simulation to evaluate the performance of an 802.11ax
network in a residential scenario. The residential scenario consists of a building with three floors.
These are the characteristics of the residential scenario:

• The spacing between the floors is three meters.
• Each floor consists of four rooms, and the dimensions of each room are 10-by-10-by-3 meters.
• Each room has an access point (AP) and two stations (STAs) placed at random x- and y-locations at

a height of 1.5 meters from the floor.
• Each AP transmits data to the associated STAs in the same room.

The simulation scenario specifies a path loss model based on the distance between the nodes, and the
number of walls and floors traversed by the WLAN signal. This figure shows the residential scenario
simulated in this example.

7 System-Level Simulation

7-40

To confirm compliance with the IEEE 802.11 standard [2 on page 7-48], the features in this example
are validated with Box-3 and Box-5 scenarios specified in the TGax evaluation methodology [3 on
page 7-48]. The network throughputs that are calculated for TGax simulation scenarios [4 on page 7-
48] are validated against the published calibration results from the TGax Task Group.

Check for Support Package Installation

Check if the Communications Toolbox™ Wireless Network Simulation Library support package is
installed. If the support package is not installed, MATLAB® returns an error with a link to download
and install the support package.

wirelessnetworkSupportPackageCheck

Configuration Parameters

Simulation Parameters

Set the seed for the random number generator to 1. The seed value controls the pattern of random
number generation. The random number generated by the seed value impacts several processes
within the simulation, including backoff counter selection at the MAC layer and predicting packet

 802.11ax Multinode System-Level Simulation of Residential Scenario

7-41

reception success at the PHY layer. To improve the accuracy of your simulation results after running
the simulation, you can change the seed value, run the simulation again, and average the results over
multiple simulations.

rng(1,"combRecursive")

Specify the simulation time in seconds. To visualize a live state transition plot for all of the nodes, set
the showLiveStateTransitionPlot variable to true.

simulationTime = ;

showLiveStateTransitionPlot = ;

This example uses the abstract models of MAC and PHY layers at all the nodes (APs and STAs) by
default. To use the full MAC layer model, set the MACFrameAbstraction variable to false.
Similarly, to use the full PHY layer model, set the PHYAbstractionMethod variable to none. For
more information about MAC and PHY, see the “Get Started with WLAN System-Level Simulation in
MATLAB” on page 7-31 example.

MACFrameAbstraction = ;

PHYAbstractionMethod = ;

Residential Scenario Parameters

The ScenarioParameters structure defines the size and layout of the residential building by using
these parameters.

• BuildingLayout — Specify the number of rooms along the length, breadth, and height of the
building.

• RoomSize — Specify the size of each room in meters.
• NumRxPerRoom — Specify the number of stations per room.

The example assumes each room contains one transmitting AP and two receiving STAs.

ScenarioParameters = struct;
ScenarioParameters.BuildingLayout = [2 2 3];
ScenarioParameters.RoomSize = [10 10 3];
ScenarioParameters.NumRxPerRoom = 2;

Configure WLAN Scenario

Initialize the wireless network simulator by using the wirelessNetworkSimulator object.

networkSimulator = wirelessNetworkSimulator.init;

Nodes

The example creates a residential scenario consisting of 36 nodes. Node 1 to Node 12 are APs, and
Node 13 to Node 36 are STAs. The hGetIDsAndPositions helper function returns node IDs and
random positions for the AP and STAs within each room. The function returns an array, nodeIDs,
where each row stores the IDs of the AP and its associated STAs in the same room. The
apPositions and staPositions outputs contain the x-, y-, and z-Cartesian coordinates of the APs
and STAs, respectively. Units are in meters.

7 System-Level Simulation

7-42

[nodeIDs,apPositions,staPositions] = hGetIDsAndPositions(ScenarioParameters);

The wlanDeviceConfig object enables you to set the configuration parameters for the APs and
STAs. Create two wlanDeviceConfig objects to initialize the configuration parameters for the APs
and the STAs. Specify the operating mode, modulation and coding scheme, and the transmission
power (in dBm) for the APs and STAs.

accessPointCfg = wlanDeviceConfig(Mode="AP",MCS=2,TransmitPower=15); % AP device configuration
stationCfg = wlanDeviceConfig(Mode="STA",MCS=2,TransmitPower=15); % STA device configuration

Create two arrays of wlanNode objects, corresponding to the AP nodes and STA nodes, by specifying
their Position properties as apPosition and staPosition, respectively. Each array contains a
number of objects equal to the number of positions specified by the corresponding value. Specify the
Name, DeviceConfig, PHYAbstractionMethod, and MACFrameAbstraction properties of
wlanNode objects.

accessPoints = wlanNode(Position=apPositions, ...
 Name="AP"+(1:size(apPositions,1)), ...
 DeviceConfig=accessPointCfg, ...
 PHYAbstractionMethod=PHYAbstractionMethod, ...
 MACFrameAbstraction=MACFrameAbstraction);
stations = wlanNode(Position=staPositions, ...
 Name="STA"+(1:size(staPositions,1)), ...
 DeviceConfig=stationCfg, ...
 PHYAbstractionMethod=PHYAbstractionMethod, ...
 MACFrameAbstraction=MACFrameAbstraction);

Create a WLAN network consisting of APs and STAs.

nodes = [accessPoints stations];

To ensure all the nodes are configured properly, use the hCheckWLANNodesConfiguration helper
function.

hCheckWLANNodesConfiguration(nodes)

Association and Application Traffic

Associate the STAs in each room to the corresponding AP by using the associateStations object
function of the wlanNode object. Configure the APs with continuous application traffic to their
associated STAs by using the FullBufferTraffic argument.

numAPs = prod(ScenarioParameters.BuildingLayout); % One AP per room
for apID = 1:numAPs
 associateStations(nodes(apID),[nodes(nodeIDs(apID,2:end))],FullBufferTraffic="DL");
end

Create Network

Create transmitter and receiver sites from the node configurations by using the
hCreateSitesFromNodes helper function. Create the building geometry from the residential
scenario parameters by using the hTGaxResidentialTriangulation helper object. Visualize the
residential building along with the transmitter and receiver sites by using the hVisualizeScenario
helper function.

[txSites,rxSites] = hCreateSitesFromNodes(nodes);
triangulationObj = hTGaxResidentialTriangulation(ScenarioParameters);
hVisualizeScenario(triangulationObj,txSites,rxSites,apPositions)

 802.11ax Multinode System-Level Simulation of Residential Scenario

7-43

Wireless Channel

This example uses the TGax residential propagation model to determine path loss between nodes.
Path loss is a function of the number of walls, number of floors, and distance between nodes. Create a
path loss model by using the hTGaxResidentialPathLoss helper function. Obtain the path loss
function handle by using the hCreatePathlossTable helper function.

propModel = hTGaxResidentialPathLoss(Triangulation=triangulationObj,ShadowSigma=0,FacesPerWall=1);
[~,pathLossFcn] = hCreatePathlossTable(txSites,rxSites,propModel);

To add a channel object to the wireless network simulator, create a
hSLSTGaxMultiFrequencySystemChannel helper object by using the path loss function handle.
Add the residential path loss model to the network simulator by using the addChannelModel object
function of the wirelessNetworkSimulator object.

7 System-Level Simulation

7-44

channel = hSLSTGaxMultiFrequencySystemChannel(nodes,PathLossModel="custom",PathLossModelFcn=pathLossFcn);
addChannelModel(networkSimulator,channel.ChannelFcn)

Simulation

Add your nodes to the wireless network simulator.

addNodes(networkSimulator,nodes)

To view the state transition and performance metrics plots, create a hSimulationPlotViewer
helper object. By default, this helper object shows the plots for all the nodes configured in the
simulation. To visualize the state transitions and performance metrics of specific nodes, specify the
corresponding node objects as the second argument to the helper object.

viewerObj = hSimulationPlotViewer(showLiveStateTransitionPlot,nodes);

Run the network simulation for the specified simulation time. The runtime visualization shows the
time spent by the AP and the STA in Idle, Contention, Transmission, and Reception state.

run(networkSimulator,simulationTime);

 802.11ax Multinode System-Level Simulation of Residential Scenario

7-45

Results

Retrieve the APP, MAC, and PHY statistics at each node by using the statistics object function of
the wlanNode object.

stats = statistics(nodes);

Plot the performance of each node by using the plotNetworkStats function of the
hSimulationPlotViewer object. You can visualize these simulation plots.

• Throughput (in Mbps) at each transmitter (AP).
• Packet loss ratio (ratio of unsuccessful data transmissions to the total data transmissions) at each

transmitter (APs).
• Average packet latency incurred at each receiver (STA). The average packet latency shows the

average latency that each STA incurs to receive the downlink traffic from the AP.

plotNetworkStats(viewerObj,simulationTime)

7 System-Level Simulation

7-46

Further Exploration

Export WLAN MAC Frames to PCAP or PCAPNG File

You can capture packets at both AP and STA nodes by using the hExportWLANPackets helper
object. Specify the node objects at which you want to capture the packets. To capture packets at
multiple nodes, specify the corresponding node objects as an array. You can export the packets
captured at the AP and STA nodes to a PCAP or PCAPNG file. For more information about capturing
packets, and exporting captured packets to a PCAP or PCAPNG file, see the “Get Started with WLAN
System-Level Simulation in MATLAB” on page 7-31 example.

Appendix

The example uses these helpers:

• hGetIDsAndPositions — Return node IDs and random positions for the APs and STAs
• hCheckWLANNodesConfiguration — Check if the node parameters are configured correctly
• hCreateSitesFromNodes — Return transmitter and receiver sites
• hTGaxResidentialTriangulation — Create the residential scenario geometry
• hCreatePathlossTable — Return the path loss function handle in the residential scenario
• hVisualizeScenario — Display the residential building along with transmitters and receivers
• hTGaxIndoorLinkInfo — Return the number of floors, the number of walls, and the distance

between points for a link

 802.11ax Multinode System-Level Simulation of Residential Scenario

7-47

• hExportWLANPackets — Capture MAC frames and write them into a PCAP or PCAPNG file
• hTGaxResidentialPathLoss — Configure and create a residential path loss model
• hSLSTGaxMultiFrequencySystemChannel — Return a system channel object and set the path

loss model
• hSLSTGaxAbstractSystemChannel — Return a channel object for an abstracted PHY layer
• hSLSTGaxSystemChannel — Return a channel object for a full PHY layer
• hSLSTGaxSystemChannelBase — Return the base channel object
• hSimulationPlotViewer — Plot the state transition and performance metric figures

References

1 Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Information
Technology--Telecommunications and Information Exchange between Systems Local and
Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High-
Efficiency WLAN. IEEE 802.11ax-2021. IEEE, May 19, 2021. https://doi.org/10.1109/
IEEESTD.2021.9442429.

2 Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard for Information
Technology--Telecommunications and Information Exchange between Systems Local and
Metropolitan Area Networks--Specific Requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. IEEE 802.11-2020. IEEE, February 26,
2021. https://doi.org/10.1109/IEEESTD.2021.9363693.

3 Institute of Electrical and Electronics Engineers (IEEE). 11ax Evaluation Methodology. IEEE
802.11-14/0571r12. IEEE, January 2016.

4 Institute of Electrical and Electronics Engineers (IEEE). TGax Simulation Scenarios. IEEE
802.11-14/0980r16. IEEE, 2015.

See Also
Functions
statistics

Objects
wirelessNetworkSimulator | wlanNode | wlanDeviceConfig

Related Examples
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “802.11ax Downlink OFDMA Multinode System-Level Simulation” on page 7-12
• “Spatial Reuse with BSS Coloring in 802.11ax Network Simulation” on page 7-2
• “WLAN System-Level Simulation Statistics” on page 7-114

7 System-Level Simulation

7-48

https://doi.org/10.1109/IEEESTD.2021.9442429
https://doi.org/10.1109/IEEESTD.2021.9442429
https://doi.org/10.1109/IEEESTD.2021.9363693

802.11 MAC and Application Throughput Measurement

This example shows how to measure the MAC and application layer throughput in a multi-node
802.11a/n/ac/ax network using SimEvents®, Stateflow®, and WLAN Toolbox™. The system-level
model presented in this example includes functionalities such as configuring the priority of the traffic
at the application layer, capability to generate and decode waveforms of Non-HT, HT-MF, VHT, HE-SU
and HE-EXT-SU formats, MPDU aggregation and enabling block acknowledgment of MPDUs. The
application layer throughput calculated using this model is validated against published calibration
results from the TGax Task Group [4] for Box 3 scenarios (Tests 1a, 1b, and 2a) specified in TGax
evaluation methodology [3]. The obtained application layer throughput is within the range of
minimum and maximum throughput specified in published calibration results [4].

Throughput in 802.11 Networks

The IEEE® 802.11™ working group is continually adding features to 802.11 specification [1] to
improve the throughput and reliability in WLAN networks. Throughput is the amount of data
transmitted over a period of time. Medium Access Control (MAC) layer throughput refers to the
amount of data successfully transmitted by the MAC layer over a period of time. MAC protocol data
unit (MPDU) is the unit of transmission at MAC layer. In 802.11n, MPDU aggregation was introduced
to increase the throughput. When MPDU aggregation is supported, MAC layer aggregates multiple
MPDUs into an aggregated MPDU (A-MPDU) for transmission. This reduces the overhead of channel
contention for transmitting multiple frames, resulting in enhanced throughput. In 802.11ac [1] and
802.11ax [2], the maximum limits for an A-MPDU length were increased resulting in even better
throughput in WLAN networks.

Model 802.11 Network

This example models a WLAN network with five nodes as shown in this figure. These nodes
implement carrier-sense multiple access with collision avoidance (CSMA/CA) with physical carrier
sense and virtual carrier sense. The physical carrier sensing uses the clear channel assessment (CCA)
mechanism to determine whether the medium is busy before transmitting. Whereas, the virtual
carrier sensing uses the RTS/CTS handshake to prevent the hidden node problem.

The model in the example displays various statistics such as the number of transmitted, received, and
dropped packets at PHY and MAC layers. Moreover, the runtime figures that help in analyzing/
estimating the node-level and network-level performance are also displayed in this model. This model
is validated against the published calibration results from the TGax Task Group [4] for Box 3
scenarios (Tests 1a, 1b, and 2a) specified in TGax evaluation methodology [3].

WLAN Network

 802.11 MAC and Application Throughput Measurement

7-49

Components of a WLAN Node

The components of a WLAN node are shown in this figure. The information is retrieved by pressing
the arrow button for each node in the above figure.

Application, EDCA MAC, PHY, and Channel Block Capabilities

Application:

The application layer has the capability to generate data with different priority levels as shown in this
figure. These priority levels are configured using Access Category property in the mask
parameters of the Application Traffic Generator block inside a WLAN node. You can also configure
the packet size, inter-packet interval, and destination node for the application layer.

7 System-Level Simulation

7-50

EDCA MAC:

The EDCA MAC block used in this example has the following capabilities:

• Generate and decode MAC frames of high efficiency single user (HE-SU), high efficiency extended
range single user (HE-EXT-SU), very high throughput (VHT), high throughput mixed format (HT-
MF) and Non-HT formats. These formats are configured using the PHY Tx Format property in
the mask parameters of the MAC EDCA block inside a WLAN node as shown in this figure.

• Aggregate MPDUs to form an A-MPDU. This can be configured by setting PHY Tx Format to one
of HT-MF, VHT, HE-SU, or HE-EXT-SU. In case of HT-MF, MPDU Aggregation property must also
be enabled for A-MPDU generation.

• Acknowledge multiple MPDUs in an A-MPDU with a single block acknowledgment (BA) frame.
MAC assumes a pre-configured BA session between the transmitter and the receiver of an A-
MPDU.

• Enable/disable acknowledgments. This can be configured using the Ack Policy property.
• Maintain separate retry limits for shorter frames (less than RTS threshold) and longer frames

(greater than or equal to RTS threshold). These limits can be configured using the Max Short
Retries and Max Long Retries properties.

• Transmit multiple streams of data using the multiple-input multiple-output (MIMO) capability. You
can configure this capability using the Number of Transmit Chains property. This property is
applicable only when the value of PHY Tx Format property is set to VHT, HE-SU, or HE-EXT-SU.
The MIMO capability can also be used for HT format through the MCS property. The range of
values [0, 7], [8, 15], [16, 23], and [24, 31] correspond to one, two, three, and four streams of data
respectively.

• Adapt the data rate according to the channel conditions through the Rate Adaptation
Algorithm property. This is applicable only when the value of PHY Tx Format property is set to
Non-HT. You can choose between Auto Rate Fallback (ARF) and Minstrel algorithms. To
maintain a constant data rate throughout the simulation, Fixed-Rate option is available.

 802.11 MAC and Application Throughput Measurement

7-51

PHY:

The PHY Transmitter and PHY Receiver blocks have the capability to generate and decode waveforms
of Non-HT, HT-MF, VHT, HE-SU and HE-EXT-SU formats. You can configure the transmit gain and
transmit power using the Tx Gain and Tx Power properties in the mask parameters of the PHY
Transmitter block inside a WLAN node.

7 System-Level Simulation

7-52

Similarly, you can configure the receive gain and receive noise figure using the Rx Gain and Rx
Noise Figure properties in the mask parameters of the PHY Receiver block inside a WLAN node.

Channel:

 802.11 MAC and Application Throughput Measurement

7-53

Channel impairments determined by free-space path-loss model and Rayleigh multipath fading are
added to the transmitted PHY waveform. You can choose to enable or disable these impairment
models. In addition to the impairment models, the signal reception range can also be limited by an
optional range propagation loss model. To model any of these losses, the channel model must contain
both the sender and receiver positions along with the transmitted signal strength. The channel is
modeled inside each receiving node, before passing the waveform to the PHY Receiver block.

Throughput Measurement

Throughput varies for different configuration parameters pertaining to the application, MAC & PHY
layers. Any change in the configuration may either increase or decrease the throughput. You can vary
the combination of these parameters to measure and analyze the throughput.

• MCS: PHY data rate
• PHY Tx Format: PHY transmission format
• Packet Size: Application packet size
• Max A-MPDU Subframes: Maximum number of subframes in an A-MPDU
• Max Tx Queue Size: MAC transmission queue size

Along with above parameters, you can also vary the node positions, Tx & Rx gains, channel loss,
number of nodes in the network, MAC contention parameters, number of transmit chains and rate
adaptation algorithms to analyze MAC throughput. This example demonstrates the measurement and
analysis of the MAC throughput by varying packet size in the Application Traffic Generator
block.

Application Packet Size

Throughput is directly proportional to the application packet size. Smaller packet size results in
greater number of packets to be transmitted. At the MAC layer, there is an overhead of contention
time for each transmitted packet. This is because the MAC layer makes sure that the channel is idle

7 System-Level Simulation

7-54

for a specific amount of time (Refer section 10.3.2.3 of [1]) before transmitting any packet.
Therefore, as the packet size decreases, the contention overhead increases resulting in lower
throughput.

Model Configuration

You can configure the application packet size using these steps:

1 Open model WLANMACThroughputMeasurementModel.slx
2 To go inside a node subsystem, click on the downward arrow at the bottom left of the node
3 To open mask parameters of the application, double click on Application Traffic

Generator
4 To enable application, set App State to 'On'
5 Configure the value of Packet Size

Run the simulation and observe the throughput. The TGax calibration results for test-1a in [4] are
shown below:

The above plot compares the calibration results for WLAN Toolbox against the published results of
other companies listed in [4]. The blue colored curve represents the results of WLAN Toolbox, while
the grey colored curves represent the results of other companies.

Simulation Results

The simulation of the model generates:

 802.11 MAC and Application Throughput Measurement

7-55

1 A run-time visualization showing the time spent on channel contention, transmission, and
reception for each node

2 An optional run-time visualization (during the simulation) showing the number of frames queued
in MAC transmission queues for a selected node.

3 A bar graph showing metrics for each node such as number of transmitted, received, and
dropped packets at PHY and MAC layers

4 A MAT file statistics.mat with detailed statistics obtained at each layer for each node

This figure shows MAC state transitions with respect to simulation time.

You can also observe the live state of the MAC layer transmission buffers using the 'Observe MAC
queue lengths' button in the above visualization.

7 System-Level Simulation

7-56

This figure shows the network statistics at the end of simulation.

 802.11 MAC and Application Throughput Measurement

7-57

Validating Application Layer Throughput with TGax Calibration Results

The TGax Task Group [4] published application throughput results for different scenarios. You can
observe the Layer 3 (above MAC layer) throughput of each node in the network in 'Throughput'
column in 'statisticsTable' stored in 'statistics.mat'. The TGax calibration scenarios for MAC simulator
published results of application throughput for a User Datagram Protocol (UDP) with Logical Link
Control (LLC) layers overhead.

To calculate application throughput from simulation results use the code below:

% Load statistics.mat (Output of the simulation) file
simulationResults = load('statistics', 'statisticsTable');
% Statistics
stats = simulationResults.statisticsTable;

% Successfully transmitted MAC layer bytes in the network
totalMACTxBytes = sum(stats.MACTxBytes);

% UDP & LLC overheads (bytes)
udpOverhead = 36;
llcOverhead = 8;

% UDP & LLC overhead (bytes) in the network
udpAndLLCOverhead = sum(stats.MACTxSuccess)*(udpOverhead + llcOverhead);

% Successfully transmitted application bytes

7 System-Level Simulation

7-58

totalAppTxBytes = totalMACTxBytes - udpAndLLCOverhead;

% Time at which last transmission is completed in the network (Microseconds)
simulationTime = max(stats.MACRecentFrameStatusTimestamp);

% Application throughput (Mbps)
applicationThroughput = (totalAppTxBytes*8)/simulationTime;
disp(['Application Throughput = ' num2str(applicationThroughput) ' Mbps']);

Application Throughput = 4.7276 Mbps

The application throughput for different TGax calibration scenarios is plotted against different MAC
service data unit (MSDU) sizes for a simulation time of 30 seconds as shown below:

 802.11 MAC and Application Throughput Measurement

7-59

7 System-Level Simulation

7-60

 802.11 MAC and Application Throughput Measurement

7-61

7 System-Level Simulation

7-62

Further Exploration

Configuration options

You can change these configuration parameters to further explore this example:

• Application layer: Access category and packet interval
• MAC layer: RTS threshold, Tx queue size, data rate, short retry limit, long retry limit, transmitting

frame format, MPDU aggregation, ack policy, number of transmit chains and the rate adaptation
algorithms

• PHY: PHY Tx gain, PHY Rx gain, and Rx noise figure
• Channel modeling: Rayleigh fading, free space pathloss, range propagation loss and packet

receive range
• Node positions using node position allocator
• The state of each node can be visualized during the run-time through the configuration available

in the Visualizer block
• By default, the PHY transmitter and the receiver blocks run in the Interpreted execution

mode. For longer simulation time, configure all the blocks to Code generation mode for better
performance.

Related examples

Refer these examples for further exploration:

 802.11 MAC and Application Throughput Measurement

7-63

• To model a multi-node IEEE 802.11ax network with abstracted PHY using SimEvents, refer
“802.11ax System-Level Simulation with Physical Layer Abstraction” on page 7-66 example.

• To get started on modeling a multi-node IEEE 802.11 network using MATLAB, refer “Get Started
with WLAN System-Level Simulation in MATLAB” on page 7-31

• To model a multi-node IEEE 802.11ax residential scenario using MATLAB, refer “802.11ax
Multinode System-Level Simulation of Residential Scenario” on page 7-40

This example enables you to create and configure a multi-node 802.11 network using a Simulink
model for analyzing the MAC and application layer throughput. In this model, the MAC throughput
obtained through the simulation results is used to calculate the application layer throughput. This
model is validated using the Box 3 scenarios (Tests 1a, 1b, and 2a) specified in TGax evaluation
methodology [3] to confirm that it complies with the IEEE 802.11 [1]. This example concludes that
the calculated application layer throughput is within the range of minimum and maximum throughput
specified in published calibration results [4].

Appendix

The helper functions and objects used in this example are:

1 edcaFrameFormats.m: Create an enumeration for PHY frame formats.
2 edcaNodeInfo.m: Return MAC address of a node.
3 edcaPlotQueueLengths.m: Plot MAC queue lengths in the simulation.
4 edcaPlotStats.m: Plot MAC state transitions with respect to simulation times.
5 edcaStats.m: Create an enumeration for simulation statistics.
6 edcaUpdateStats.m: Update statistics of the simulation.
7 helperAggregateMPDUs.m: Generate an A-MPDU, by creating and appending the MPDUs

containing the MSDUs in the MSDULIST.
8 helperSubframeBoundaries.m: Return subframes information of an A-MPDU.
9 phyRx.m: Model PHY operations related to packet reception.
10 phyTx.m: Model PHY operations related to packet transmission.
11 edcaApplyFading.m: Apply Rayleigh fading effect on the waveform.
12 heSIGBUserFieldDecode.m: Decode HE-SIG-B user field.
13 heSIGBCommonFieldDecode.m: Decode HE-SIG-B common field.
14 heSIGBMergeSubchannels.m: Merge 20MHz HE-SIG-B subchannels.
15 addMUPadding.m: Add multiuser PSDU padding.
16 macQueueManagement.m: Create a WLAN MAC queue management object.
17 roundRobinScheduler.m: Create a round-robin scheduler object.
18 calculateSubframesCount.m: Return number of subframes to be aggregated.
19 interpretVHTSIGABitsFailCheck.m: Interprets the bits in VHT-SIG-A field
20 rateAdaptationARF.m: Create an auto rate fallback (ARF) algorithm object.
21 rateAdaptationMinstrelNonHT.m: Create a minstrel algorithm object.

References

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific

7 System-Level Simulation

7-64

Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

3 IEEE 802.11-14/0571r12. "11ax Evaluation Methodology." IEEE P802.11P: Wireless LANs.
4 Baron, Stephane., Nezou, Patrice., Guignard, Romain., and Viger, Pascal. "MAC Calibration

Results." Presentation at the IEEE P802.11 - Task Group AX, September 2015.

See Also

More About
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “802.11ax Multinode System-Level Simulation of Residential Scenario” on page 7-40

 802.11 MAC and Application Throughput Measurement

7-65

802.11ax System-Level Simulation with Physical Layer
Abstraction

This example demonstrates how to model a multi-node IEEE® 802.11ax™ [1] network with
abstracted physical layer (PHY) using SimEvents®, Stateflow®, and WLAN Toolbox™. A PHY
abstraction model largely reduces the complexity and the duration of system-level simulations by
replacing the actual physical layer computations. This makes it possible to evaluate systems
consisting of large number of nodes, resulting in increased scalability. Abstracted PHY models signal-
power, gain, delay, loss and interference on each packet without generating physical layer packets, as
specified by the TGax Evaluation Methodology [3].

Physical Layer Abstraction

This example shows how to model an 802.11ax network with abstracted PHY. The example presents a
variation of the system model used in the example “802.11 MAC and Application Throughput
Measurement” on page 7-49. In “802.11 MAC and Application Throughput Measurement” on page 7-
49 example, full PHY processing is modeled where waveforms are generated and decoded at the
physical layer. However, this example models an abstracted PHY where no waveforms are generated
or decoded. Abstracting the physical layer reduces the time taken for simulation at the cost of fidelity.
Fidelity refers to the degree of exactness with which the PHY is modeled in the simulation.
Simulations that tolerate low fidelity at the physical layer can use the abstracted PHY model.

The abstracted PHY operates on pre-computed packet error rate (PER) tables and equations. These
tables and equations are used to estimate the corrupted packet without any actual modulation or
demodulation of packets, resulting in a low fidelity model. Refer the example “Physical Layer
Abstraction for System-Level Simulation” on page 7-90 for more details related to the PHY
abstraction.

Abstracted Physical Layer Blocks

This section explains the blocks used for modeling the abstracted PHY and how it fits into the 802.11
[2] network model. Full PHY modeling involves operations related to waveform transmission and
reception through a fading channel. Abstracted PHY models signal-power, gain, delay, loss and
interference on each packet without generating physical layer packets. This example provides a PHY
Transmitter, a Statistical Channel, and a PHY Receiver for modeling an abstracted PHY.
These blocks are available in the library wlanAbstractedPHYLib.

Abstracted PHY Transmitter:

The Abstracted PHY Transmitter block models the transmit chain of the physical layer. This
block consumes the frame and corresponding transmission parameters from the MAC layer.
Parameters like transmit power, preamble duration, header duration and payload duration are
calculated in the block. This information is passed along with the MAC frame as the metadata to
simulate the transmission of a waveform.

7 System-Level Simulation

7-66

Interfaces to the Abstracted PHY Transmitter block are:

• MACToPHYReq: Triggers for indicating transmission start/end requests from MAC layer
• FrameToPHY: MAC frame to be transmitted
• PhyTxConfirms: Confirmation triggers to MAC layer for indicating completion of MAC layer

requests
• Waveform: Abstract waveform transmitted into the channel (MAC frame and the metadata)

Statistical Channel:

The Statistical Channel block models pathloss, propagation delay, and reception range of the
packet. To enable the estimation of loss, delay, and range at each receiver, the Statistical
Channel block must be modeled inside every node coupled with the Abstracted PHY Receiver.
Propagation delay is applied on each received packet, and the signal strength of each packet is
degraded with optional pathloss. If the receiving node is within the range, the packet is forwarded to
the Abstracted PHY Receiver with the effective signal strength. The packet is dropped if the
receiving node is outside the range of the transmitter.

Interfaces to the Statistical Channel are:

• WaveformIn: Input packet received from a PHY transmitter
• WaveformOut: Output packet intended for PHY receivers after applying channel loss

Abstracted PHY Receiver:

The Abstracted PHY Receiver block models the receive chain of the physical layer. This block
receives and processes the packet based on the received metadata. The Abstracted PHY
Receiver block models interference based on the packets received at overlapping timelines. The
received packets are processed only at these checkpoints: (a) End of the preamble duration (b) End of

 802.11ax System-Level Simulation with Physical Layer Abstraction

7-67

each subframe duration in the payload for aggregated frames (or) end of the payload duration for
non-aggregated frames.

This block also provides an option for configuring the level of abstraction through the PHY
Abstraction mask parameter. You can configure it to 'TGax Evaluation Methodology
Appendix 1' [3] to predict the performance of a link with a TGax channel model using effective
SINR mapping. Details of this procedure can be found in the example “Physical Layer Abstraction for
System-Level Simulation” on page 7-90. Alternatively, you can configure it to 'TGax Simulation
Scenarios MAC Calibration' [4] to assume a packet failure on interference, without actually
calculating the link performance. Note that the option 'TGax Evaluation Methodology
Appendix 1' works for only MCS values in the range [0-9], as the TGax Evaluation Methodology
[3] is defined only for these values.

Interfaces to the Abstracted PHY Receiver block are:

• PHYMode: Trigger for switching off the receiver function when transmission is in progress
• Waveform: Abstract waveform received from the channel (MAC frame and the metadata)
• RxIndications: Triggers to MAC for indicating channel state shift (busy/idle) events or receive

(start/end) events
• FrameToMAC: Received MAC frame

System-Level Simulation

This example simulates a network with 10 nodes in the model, WLANMultiNodeAbstractedPHYModel,
as shown in this figure. These nodes implement carrier-sense multiple access with collision avoidance
(CSMA/CA) with physical carrier sense and virtual carrier sense. The physical carrier sensing uses
the clear channel assessment (CCA) mechanism to determine whether the medium is busy before
transmitting. The virtual carrier sensing uses the RTS/CTS handshake to prevent the hidden node
problem.

7 System-Level Simulation

7-68

The positions for all the nodes in the network are configured through the node position allocator
(NPA) block in the model. The state of each node can be visualized during run-time through the
configuration available in the Visualizer block. The Channel Matrix block is a Data Store
Memory. On initialization, a TGax channel realization is generated between each pair of nodes in the
network and the resulting channel matrix per subcarrier is stored in the block. During the simulation,
each receiver node accesses the memory to obtain the channel matrix between itself and a
transmitting node to determine the link quality. In this model, nodes 1, 2, 3, 6, 7, and 8 act as both
the transmitters and receivers, while nodes 4, 5, 9, and 10 are just passive receivers.

Node Subsystem

Each node in the above model is a subsystem representing a WLAN device. Each node contains an
application layer, a MAC layer and a physical layer. The physical layer is modeled using the
abstracted PHY blocks described in the previous section. You can configure a node to transmit and
receive packets on a specific channel (frequency) by changing the Multicast tag parameter of the
Entity Multicast and the Multicast Receive Queue blocks. By default, all nodes operate on
the same channel. You can also configure the receive range for a specific node using the Packet
Receive Range parameter of the Statistical Channel block.

You can easily switch between abstracted PHY blocks available in the wlanAbstractedPHYLib and full
PHY processing blocks available in the wlanFullPHYLib.slx library of the example “802.11 MAC
and Application Throughput Measurement” on page 7-49. The interfaces to the transmitter, receiver
and channel blocks remain the same. By default, the abstracted PHY blocks run in the Interpreted
execution mode. For longer simulation time, configure all the blocks to Code generation mode
for better performance.

 802.11ax System-Level Simulation with Physical Layer Abstraction

7-69

Simulation results

Running the model simulates the WLAN network for the specified simulation time. A plot with
network-level statistics (corresponding to MAC layer) is generated at the end of simulation. Detailed
node-level statistics (corresponding to application, MAC, and physical layers) are collected during the
simulation and saved to a base workspace file statistics.mat. You can also enable an optional live
visualization, to see the state of each node during run-time, through the mask configuration of the
Visualizer block.

7 System-Level Simulation

7-70

Scalability

The above model shows a network of 10 nodes. You can create a network with a large number of
nodes by using the hCreateWLANNetworkModel function. This helper function uses the node
subsystem from this example and creates a network of WLAN nodes positioned linearly 10 meters
apart from each other. You can create different simulation scenarios and analyze the node-level or
network-level statistics with varying number of nodes. For example, the plot below shows the
retransmissions and successful transmissions relative to the total transmissions, as the number of
nodes in the network increase. The configuration parameters used for collecting the results are:

• Format: HE-SU
• Modulation and coding scheme (MCS) index: 0
• Number of subframes in A-MPDU: 1

 802.11ax System-Level Simulation with Physical Layer Abstraction

7-71

• Distance between nodes: 10 meters
• Path loss: Not applied
• PHY abstraction type: "TGax Evaluation Methodology Appendix 1"
• Range propagation: All the nodes are within range of each other
• Operating frequency: All the nodes operate in the same frequency

The plot below shows that the simulation runs faster with abstracted PHY as compared to full PHY
processing, thus making it more scalable. The configuration parameters used for collecting the
performance results are:

• Format: HE-SU
• Modulation and coding scheme (MCS) index: 0
• Number of subframes in A-MPDU: 2
• Distance between nodes: 1 meter
• Path loss: Not applied
• PHY abstraction type: "TGax Evaluation Methodology Appendix 1"
• Range propagation: All nodes are within range of each other
• Operating frequency: All the nodes operate in the same frequency
• Simulation mode: Code generation mode for all the blocks
• Simulation time: 5 seconds

7 System-Level Simulation

7-72

• Packet generation interval: 0.001 seconds

This example explained the physical layer abstraction and demonstrated a 10-node WLAN network
with abstracted PHY. This example shows that a network simulation with abstracted PHY is faster and
more scalable compared to using full PHY processing.

Further Exploration

In this example, the A-MPDUs exchanged between the nodes are deaggregated to MPDUs at the
receiving node. These MPDUs are exported to packet capture (PCAP) and packet capture next
generation (PCAPNG) format file using the pcapDump DES block. To use the pcapDump DES block, go
to wlanSystemLevelComponentsLib

Export to PCAP/PCAPNG Format File

The PCAP/PCAPNG format files contain the packet data of the network. These files are mainly
associated with network analyzers like Wireshark [5], a third party tool used to visualize and analyze
PCAP/PCAPNG files. The main advantages of using PCAP/PCAPNG files during system level
simulations are:

• Monitor the network traffic.
• Visualize and analyze the network characteristics of the data.

To duplicate the MAC layer input entities (received A-MPDUs, FrameToMAC, and PhyRxIndicator
vector) and output entities (transmitted A-MPDUs, FrameToPHY, and MACReqToPHY vector), use the

 802.11ax System-Level Simulation with Physical Layer Abstraction

7-73

Entity Replicator blocks. The MAC layer provides RxFrameToPCAP, PhyIndToPCAP,
TxFrameToPCAP, and MACReqToPCAP as inputs to the pcapDump DES block.

The pcapDump DES block contains two input ports, one for Tx/Rx A-MPDUs and other for Tx/Rx
information.

Select the capture format as pcap or pcapng. As the simulation starts, the packets exchanged
between the nodes are logged into the selected capture format file.

To capture the packet, double click the pcapDump DES block and select the parameter Capture as
Enable.

7 System-Level Simulation

7-74

A new capture file (PCAP/PCAPNG format) is created for every node. The file name corresponds to
name of the node. If name of the node is Node1, the captured file name is Node1.pcap or
Node1.pcapng.

Appendix

The example uses these helpers:

1 edcaFrameFormats.m: Create an enumeration for PHY frame formats.
2 edcaNodeInfo.m: Return MAC address of a node.
3 edcaPlotQueueLengths.m: Plot MAC queue lengths in the simulation.
4 edcaPlotStats.m: Plot MAC state transitions with respect to simulation times.
5 edcaStats.m: Create an enumeration for simulation statistics.
6 edcaUpdateStats.m: Update statistics of the simulation.
7 helperSubframeBoundaries.m : Return subframe boundaries of an A-MPDU.
8 phyTxAbstracted: Model PHY operations related to packet transmission
9 phyRxAbstracted: Model PHY operations related to packet reception
10 channelBlock: Model the channel for a node
11 addMUPadding.m: Add or remove the padding difference between an HE-SU and HE-MU PSDU
12 macQueueManagement.m: Create a WLAN MAC queue management object
13 roundRobinScheduler.m: Create round-robin scheduler object
14 calculateSubframesCount.m: Calculate the number of subframes required to form MU-PSDU
15 hCreateWLANNetworkModel: Create a WLAN network with given number of nodes
16 hDisplayNetworkStats: Display network level statistics
17 hSetupAbstractChannel: TGax channel setup

 802.11ax System-Level Simulation with Physical Layer Abstraction

7-75

18 createRadiotapHeader: Create a radiotap header
19 rateAdaptationARF.m: Create an auto rate fallback (ARF) algorithm object.
20 rateAdaptationMinstrelNonHT.m: Create a minstrel algorithm object.

References

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

2 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

3 IEEE 802.11-14/0571r12 - 11ax Evaluation Methodology.
4 IEEE 802.11-14/0980r16 - TGax Simulation Scenarios.
5 Wireshark - Go Deep. https://www.wireshark.org/. Accessed 9 Dec. 2019.

See Also

More About
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “802.11ax Multinode System-Level Simulation of Residential Scenario” on page 7-40

7 System-Level Simulation

7-76

https://www.wireshark.org/

802.11ax PHY-Focused System-Level Simulation

This example shows how to perform a PHY-focused system-level simulation for IEEE® 802.11ax™
(Wi-Fi 6). Part (A) validates the simulation scenario, radio characteristics, and large-scale fading
model by comparing against published calibration results. Part (B) estimates the packet error rate of
the 802.11ax network by simulating individual links between active nodes under a basic clear channel
assessment scheme.

Introduction

In this example the performance of an 802.11ax [1] network in a residential apartment block is
evaluated using a PHY-focused system-level simulation.

The residential apartment block simulation scenario is specified in [2]. This consists of a building
with five floors, and twenty 10m x 10m x 3m apartments per floor. Each apartment has an access
point (AP) and one or more stations (STAs) placed in random xy-locations, a process referred to as
'dropping' nodes. This creates a basic service set (BSS) per apartment which is randomly assigned
one of three channels. The simulation scenario specifies a large-scale path loss model based on the
distance between nodes, and the number of walls and floors traversed.

The TGax evaluation methodology [3] for 'PHY System Simulation' is followed for this example:

1 APs and STAs are randomly 'dropped' within the scenario.
2 For each pair of nodes, the large-scale path loss is calculated.
3 One or more 'transmission events' is performed. Each transmission event consists of selecting

active APs and STAs based on channel access rules and determining the performance of each
link.

This example consists of two parts:

In part (A), the 'calibration' stage, the signal-to-interference-plus-noise ratio (SINR) is calculated for
multiple 'drops', assuming downlink interfering transmissions. SINR captures long-term radio
characteristics. The cumulative distribution function (CDF) of the SINR is compared with published
results from the TGax Task Group [4].

In part (B), the 'PHY system-level simulation' stage, for each transmission event the PHY layer is
modeled for individual links. A basic clear channel assessment (CCA) scheme is used to control which
APs are active. Waveforms for the signal of interest and interference, impaired by fading channel
models, are generated and combined. The resultant packets are processed by a receiver to recover
the packet of interest. The average packet error rate for the network is calculated.

 802.11ax PHY-Focused System-Level Simulation

7-77

The two parts of this example can be disabled using the parameters calibrate and
systemLevelSimulation. A figure displaying the simulation scenarios, nodes, active links, and
interference is displayed when showScenarioPlot is true.

calibrate = true; % To execute Part A calibration test
systemLevelSimulation = true; % To execute Part B system-level simulation
showScenarioPlot = true; % To show dynamic simulation plotting updates

Simulation Parameters

The major simulation parameters are defined as either belonging to Physical Layer (PHY), Medium
Access Control Layer (MAC), scenario, or simulation. In this example the PHY and MAC parameters
are assumed to be the same for all nodes.

PHYParameters = struct;
PHYParameters.TxPower = 20; % Transmitter power in dBm
PHYParameters.TxGain = 0; % Transmitter antenna gain in dBi
PHYParameters.RxGain = -2; % Receiver antenna gain in dBi
PHYParameters.NoiseFigure = 7; % Receiver noise figure in dB
PHYParameters.NumTxAntennas = 1; % Number of transmitter antennas
PHYParameters.NumRxAntennas = 1; % Number of receiver antennas
PHYParameters.ChannelBandwidth = 'CBW80'; % Bandwidth of system
PHYParameters.TransmitterFrequency = 5e9; % Transmitter frequency in Hz

MACParameters = struct;
MACParameters.NumChannels = 3; % Number of non-overlapping channels
MACParameters.CCALevel = -70; % Transmission threshold in CCA algorithm (dBm)

The scenario parameters define the size and layout of the residential building as per [3].

% Number of Rooms in [x,y,z] directions
ScenarioParameters = struct;
ScenarioParameters.BuildingLayout = [10 2 5];

% Size of each room in meters [x,y,z]
ScenarioParameters.RoomSize = [10 10 3];

% Number of receivers per room. Note that only one receiver (STA) can be
% active at any given time.
ScenarioParameters.NumRxPerRoom = 1;

The NumDrops and NumTxEventsPerDrop parameters control the length of the simulation. For this
example, these parameters are configured for a short simulation, but for meaningful results these
should be increased.

A 'drop' randomly places transmitters and receivers within the scenario and selects the channel for a
BSS. A 'transmission' event randomly selects transmitters and receivers for transmissions according
to basic channel access rules.

SimParameters = struct;
SimParameters.NumDrops = 3;
SimParameters.NumTxEventsPerDrop = 2;

Generate Transmitter Sites

Before the main body of the simulation, the transmitter site objects txsite are generated and
assigned room names of the form 'Room#' for ease of reference. One transmitter (AP) per room is
assumed. Each transmitter is assumed to be isotropic.

7 System-Level Simulation

7-78

% Total number of transmitters, assuming one transmitter (tx) per room
numTx = prod(ScenarioParameters.BuildingLayout);

% Create transmitter sites with and isotropic antenna element
roomNames = strings(1,numTx);
for siteInd = 1:numTx
 roomNames(siteInd) = "Room " + siteInd;
end
txs = txsite('cartesian','Name',roomNames,...
 'TransmitterFrequency',PHYParameters.TransmitterFrequency, ...
 'TransmitterPower',10.^((PHYParameters.TxPower+PHYParameters.TxGain-30)/10),...
 'Antenna','isotropic');

Generate Receiver Sites

The receive site objects rxsite are generated and assigned names of the form 'Room#-STA#' for
ease of reference. The Scenario parameter NumRxPerRoom is used to define how many receivers
(STAs) are present in each room. Each receiver is assumed to be isotropic.

% Total number of receivers, assuming one transmitter (tx) per room
numRx = numTx*ScenarioParameters.NumRxPerRoom;

% Create receiver sites
roomNames = strings(1,numRx);
for siteInd = 1:numRx
 roomNames(siteInd) = "Room " + (mod(siteInd-1,numTx)+1) + "-" + ceil(siteInd/numTx);
end
rxs = rxsite('cartesian','Name',roomNames,'Antenna','isotropic');

% Receiver noise power in dBm
T = 290; % Temperature (Kelvin)
k = physconst('Boltzmann'); % Boltzmann constant
% Sample rate (Hz)
fs = wlanSampleRate(wlanHESUConfig('ChannelBandwidth',PHYParameters.ChannelBandwidth));
rxNoisePower = 10*log10(k*T*fs)+30+PHYParameters.NoiseFigure;

Part A - Align Long-Term Radio Characteristics

In this section, the simulation scenario, radio characteristics, and large-scale fading model are
verified by performing the TGax Evaluation Methodology Box 1 Test 2 Downlink Only calibration test
[3]. This test calculates the SINR at all receivers (STAs) assuming all transmitters (APs) are active.
Multiple drops of transmitters and receivers are performed as part of the simulation. One active
receiver is selected per drop.

The SINR for each receiver is calculated and aggregated over all drops simulated to generate a CDF
curve. This curve is compared with the calibration results provided in [4].

A plot showing the node positions, active links, and interfering links is generated per drop. Individual
channels can be hidden and shown in the plot by clicking the corresponding legend entry.

seed = rng(6); % Seed random number generator and store state

if showScenarioPlot
 hGrid = tgaxBuildResidentialGrid(ScenarioParameters.RoomSize,ScenarioParameters.BuildingLayout, ...
 numTx,numRx,MACParameters.NumChannels);
end

 802.11ax PHY-Focused System-Level Simulation

7-79

if calibrate

fprintf('Running calibration ...\n');

% Pre-allocate output
output = struct;
output.sinr = zeros(SimParameters.NumDrops,numTx); % for storing SINR values
for drop = 1:SimParameters.NumDrops
 % Drop receivers in each room
 [association,txChannels,rxChannels,txPositions,rxPositions] = tgaxDropNodes(...
 txs,rxs,ScenarioParameters,MACParameters.NumChannels);

 % All transmitters active
 activeTx = true(numTx,1);

 % Only pick one receiver per Room
 rxAlloc = randi([1 ScenarioParameters.NumRxPerRoom],numTx,1);
 activeRx = reshape(rxAlloc==1:ScenarioParameters.NumRxPerRoom,[],1);

 % Generate propagation model
 propModel = TGaxResidential('roomSize',ScenarioParameters.RoomSize);

 % Get the index of the transmitter for each receiver
 tnum = repmat((1:numTx),1,numRx/numTx);

 % SINR calculation - loop over each non-overlapping channel
 activeChannels = unique(txChannels);
 for k = 1:numel(activeChannels)
 % Use kth non-overlapping channel
 tind = txChannels == activeChannels(k);
 rind = false(size(activeRx));
 rind(activeRx) = rxChannels(activeRx) == activeChannels(k);
 % Get the index of the transmitter of interest for each active receiver
 tsigind = tnum(rind);

 % Calculate SNR
 output.sinr(drop,tind) = sinr(rxs(rind),txs(tind),...
 'ReceiverGain',PHYParameters.RxGain,...
 'ReceiverNoisePower',rxNoisePower,...
 'PropagationModel',propModel,...
 'SignalSource',txs(tsigind));
 end

 % Plot nodes and links
 if showScenarioPlot % update plot data
 mask = txChannels==rxChannels';
 tgaxUpdatePlot(hGrid,txPositions,rxPositions,activeTx,activeRx,mask,txChannels,rxChannels, ...
 sprintf('Box 1 Test 2 "downlink only" calibration, drop #%d/%d',drop,SimParameters.NumDrops));
 end
end

% Plot the CDF of SINR and compare with calibration curves
tgaxCalibrationCDF(output.sinr,'SS1Box1Test2','Long-term Radio Characteristics');

fprintf('Calibration complete \n')

end

7 System-Level Simulation

7-80

Running calibration ...
Calibration complete

 802.11ax PHY-Focused System-Level Simulation

7-81

This example simulates a small number of drops. Therefore, for a more meaningful comparison the
number of drops simulated should be increased. The calibration result for 100 drops is shown below:

7 System-Level Simulation

7-82

Part B - PHY-focused System-Level Simulation

In this section, the scenario and path-loss model calibrated in part A are used to perform a PHY-
focused system-level simulation and determine the packet error rate for the network. This simulation
is described as PHY-focused as the PHY is not abstracted and the MAC is simplified. Each active link
is modeled using baseband transmitter and receiver processing. A very simple MAC assumes at each
transmission event all transmitters (APs) wish to transmit, and one receiver (STA) per BSS is the
recipient. A simple CCA algorithm is used to control channel access between transmitters as specified
in Figure 4 of [3]. The CCA algorithm enables random transmitters if the signal power received from
transmitters that have already been activated does not exceed the CCA threshold,
MACParameters.CCAThreshold.

The received signal power from all possible interfering transmitters is calculated at each active
receiver. If the received power from an interfering transmitter is above the noise floor of the receiver,
then the link is modeled with full baseband transmitter and receiver processing. For each modeled
link an HE single-user packet is generated and passed through a TGax Model-D NLOS stationary
indoor channel model. At the receiver, the waveforms from the transmitter of interest and all
interfering transmitters are scaled by the expected path-loss and combined to create a waveform
containing the signal of interest plus interference. All waveforms are time aligned. The receiver
performs synchronization, demodulation, and decoding to attempt to recover the payload. The
decoded payload is compared to the PSDU transmitted in the BSS to determine if the packet has been
recovered successfully.

 802.11ax PHY-Focused System-Level Simulation

7-83

In this example the transmission and channel parameters are assumed to be the same for all nodes.
The transmission configuration for all packets is one space-time stream, no space-time block coding
and 16-QAM rate-1/2 (MCS 3).

if systemLevelSimulation

% Pre-allocate outputs
output.numPkts = zeros(numRx,1);
output.numPktErrors = zeros(numRx,1);
output.sinrMeas = nan(numRx,SimParameters.NumTxEventsPerDrop,SimParameters.NumDrops);
output.sinrEst = nan(numRx,SimParameters.NumTxEventsPerDrop,SimParameters.NumDrops);
output.pktErrorRate = 0;

% For each possible transmitter create a waveform configuration. In this
% example the link and radio parameters are the same for all nodes.
cfgHEBase = wlanHESUConfig;
cfgHEBase.ChannelBandwidth = PHYParameters.ChannelBandwidth; % Channel bandwidth
cfgHEBase.NumTransmitAntennas = PHYParameters.NumTxAntennas; % Number of transmit antennas
cfgHEBase.SpatialMapping = 'Fourier'; % Spatial mapping matrix
cfgHEBase.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgHEBase.GuardInterval = 0.8; % Guard interval duration
cfgHEBase.HELTFType = 4; % HE-LTF compression mode
cfgHEBase.APEPLength = 1e3; % Payload length in bytes
cfgHEBase.ChannelCoding = 'LDPC'; % Channel coding
cfgHEBase.MCS = 3; % Modulation and coding scheme
cfgHE = cell(numTx,1);
for txidx = 1:numTx
 cfgHE{txidx} = cfgHEBase;
end

fprintf('Running System Level Simulation ...\n')
for drop = 1:SimParameters.NumDrops
 fprintf(' Running drop #%d/%d ...\n',drop,SimParameters.NumDrops);

 % Drop receivers in each room
 [association,txChannels,rxChannels,txPositions,rxPositions] = tgaxDropNodes(...
 txs,rxs,ScenarioParameters,MACParameters.NumChannels);

 % Generate propagation model
 propModel = TGaxResidential('roomSize',ScenarioParameters.RoomSize);

 % Calculate signal strength for all links
 signalStrength = sigstrength(rxs,txs,propModel,'Type','power',...
 'ReceiverGain',PHYParameters.RxGain); % all signal strengths in dBm

 % Threshold signals below noise level to reduce simulation time
 signalStrength(signalStrength < rxNoisePower) = -Inf;

 % Threshold signals that are not on same non-overlapping channel
 signalStrength(~(txChannels == rxChannels')) = -Inf;

 % Mask the transmitter-receiver links that are non-negligible to
 % simulate and get the linear indices
 nonnegligibleMask = signalStrength > -Inf;

 % Reset the non-negligible channels to create a new realization for the
 % current drop
 nonnegligibleIdx = find(nonnegligibleMask)';

7 System-Level Simulation

7-84

 % For each possible active link in a drop create a channel
 % configuration. In this example the link and radio parameters are the
 % same for all nodes.
 tgaxChan = cell(numel(nonnegligibleIdx),1);
 for i = 1:numel(nonnegligibleIdx)
 % Index of transmitter for a given link
 txIdx = mod(nonnegligibleIdx(i)-1,numTx)+1;
 % Channel configuration. The channel realization for each link is
 % different as the global random stream is used.
 tgaxChanBase = wlanTGaxChannel;
 tgaxChanBase.DelayProfile = 'Model-D';
 tgaxChanBase.NumTransmitAntennas = cfgHE{txIdx}.NumTransmitAntennas;
 tgaxChanBase.NumReceiveAntennas = PHYParameters.NumRxAntennas;
 tgaxChanBase.TransmitReceiveDistance = 10; % Distance in meters for NLOS
 tgaxChanBase.ChannelBandwidth = cfgHE{txIdx}.ChannelBandwidth;
 tgaxChanBase.LargeScaleFadingEffect = 'None';
 tgaxChanBase.EnvironmentalSpeed = 0; % m/s, stationary
 tgaxChanBase.SampleRate = fs;
 tgaxChanBase.NormalizeChannelOutputs = false;

 % Store in cell array and reset the channel to generate a new
 % response
 tgaxChan{i} = tgaxChanBase;
 reset(tgaxChan{i});
 end

 for txevent = 1:SimParameters.NumTxEventsPerDrop
 fprintf(' Running transmission event #%d/%d ...\n',txevent,SimParameters.NumTxEventsPerDrop);

 % Determine active transmitters and receivers with Clear Channel Assessment
 [activeTx,activeRx] = tgaxCCA(signalStrength,MACParameters.CCALevel);

 % Plot scenario and links
 if showScenarioPlot
 tgaxUpdatePlot(hGrid,txPositions,rxPositions,activeTx,activeRx,nonnegligibleMask,txChannels,rxChannels, ...
 sprintf('PHY System-Level Simulation, Drop #%d/%d, Transmission Event #%d/%d', ...
 drop,SimParameters.NumDrops,txevent,SimParameters.NumTxEventsPerDrop));
 end

 % Extract elements for active links using activeTx and activeRx
 cfgHEActive = cfgHE(activeTx);
 associationActive = association(activeTx,activeRx);
 nonnegligibleMaskActive = nonnegligibleMask(activeTx,activeRx);
 signalStrengthActive = signalStrength(activeTx,activeRx);

 % Create array containing active channels
 tgaxChanActive = cell(size(associationActive));
 matchIdx = nonnegligibleIdx==find(activeTx&activeRx');
 tgaxChanActive(nonnegligibleMaskActive) = tgaxChan(any(matchIdx,1));

 % Generate a waveform for each non-negligible active link and
 % combine waveforms for each receiver
 [rxWavs,txPSDUActive,signalPower,interfPower] = tgaxGenerateRxWaveforms(...
 cfgHEActive,tgaxChanActive,nonnegligibleMaskActive,signalStrengthActive,associationActive);

 % Run PHY link simulation for each link and determine if the packet
 % has been decoded successfully. The estimated interference power

 802.11ax PHY-Focused System-Level Simulation

7-85

 % is passed to the receiver in the place of an interference power
 % measurement algorithm.
 numActiveRxs = sum(activeRx);
 pktError = false(numActiveRxs,1);
 sinrMeas = nan(numActiveRxs,1);
 for rxIdx = 1:numActiveRxs
 [pktError(rxIdx),sinrMeas(rxIdx)] = tgaxModelPHYLink(...
 rxWavs{rxIdx},cfgHEActive{rxIdx},rxNoisePower,interfPower(rxIdx),txPSDUActive{rxIdx});
 end

 % Store output for active receivers
 output.numPktErrors(activeRx) = output.numPktErrors(activeRx)+pktError;
 output.numPkts(activeRx) = output.numPkts(activeRx) + 1;
 output.sinrMeas(activeRx,txevent,drop) = sinrMeas;

 % Calculate the expected SINR at each receiver
 sinrEst = 10*log10(signalPower./(interfPower+10^((rxNoisePower-30)/10)));
 output.sinrEst(activeRx,txevent,drop) = sinrEst;
 end
end

% Calculate average packet error rate
output.pktErrorRate = sum(output.numPktErrors)/sum(output.numPkts);

disp('Simulation complete')
disp(['Average packet error rate for transmitters: ' num2str(output.pktErrorRate)]);

end

rng(seed); % Restore random state

Running System Level Simulation ...
 Running drop #1/3 ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...
 Running drop #2/3 ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...
 Running drop #3/3 ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...
Simulation complete
Average packet error rate for transmitters: 0.054152

7 System-Level Simulation

7-86

Further Exploration

The PHY-focused system-level simulation demonstrated in this example can be used to explore the
impact of PHY-level parameters on system performance. For example, the plot below shows the
network average packet error rate for different values of CCA threshold for 50 drops and 2
transmission events per drop.

 802.11ax PHY-Focused System-Level Simulation

7-87

Appendix

This example uses the following helper functions:

• tgaxBuildResidentialGrid.m
• tgaxCalibrationCDF.m
• tgaxCCA.m
• tgaxDropNodes.m
• tgaxGenerateRxWaveforms.m
• tgaxModelPHYLink.m
• TGaxResidential.m
• tgaxUpdatePlot.m

Selected Bibliography

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

2 IEEE 802.11-14/0980r16 - TGax Simulation Scenarios.
3 IEEE 802.11-14/0571r12 - 11ax Evaluation Methodology.

7 System-Level Simulation

7-88

4 IEEE 802.11-14/0800r30 - Box 1 and Box 2 Calibration Results.

See Also

More About
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “802.11ax Multinode System-Level Simulation of Residential Scenario” on page 7-40

 802.11ax PHY-Focused System-Level Simulation

7-89

Physical Layer Abstraction for System-Level Simulation

This example demonstrates IEEE® 802.11ax™ physical layer abstraction for system-level simulation.
A link quality model and link performance model based on the TGax evaluation methodology are
presented and validated by comparing with published results.

Introduction

Modeling the full physical layer processing at each transmitter and receiver when simulating large
networks is computationally expensive. Physical layer abstraction, or link-to-system mapping is a
method to run simulations in a timely manner by accurately predicting the performance of a link in a
computationally efficient way.

This example demonstrates physical layer abstraction for the data portion of an 802.11ax [1 on page
7-104] packet based on the TGax evaluation methodology [2 on page 7-104].

There are two parts to the physical layer abstraction model [3 on page 7-104, 4 on page 7-104]:

• The link quality model calculates the post-equalizer signal to interference and noise ratio
(SINR) per subcarrier. For a receiver, this is based on the location and transmission characteristics
of the transmitter of interest, and interfering transmissions, and the impact of large- and small-
scale fading.

• The link performance model predicts the instantaneous packet error rate (PER), and therefore
transmission success of an individual packet, given the SINR per subcarrier and coding
parameters used for the transmission.

The example is split into two parts:

• Part A on page 7-90 demonstrates the link quality model used to obtain the SINR per subcarrier
and validates it by comparing the results for a residential scenario as per the box 2 tests in the
TGax evaluation methodology. The objective of box 2 tests is to align the distribution of small and
large scale fading channels with MIMO configurations of TGax contributors.

• Part B on page 7-95 demonstrates the link performance model used to estimate the PER, and
compares the result of using the abstraction against a link-level simulation with a fading TGax
channel model as per the box 0 tests in the TGax evaluation methodology. The objective of box 0
tests is to align PHY abstractions of TGax contributors.

Part A - Link Quality Model

The link quality model implements the box 2 SINR equation from the TGax Evaluation Methodology.
The multiple-input-multiple-output (MIMO) SINR per subcarrier (index m) and spatial stream (index
j) between the transmitter and receiver of interest is given by

SINRRX
TX m, j =

SRX
TX m, j

IsRX
TX m, j + IoRX

TX m, j + N m, j
.

7 System-Level Simulation

7-90

The SINR takes into account the path-loss and fading channels between all transmitters and the
receiver, and precoding applied at the transmitters. The power of the signal of interest is given by

SRX
TX m, j = PRX

TX TRX m j
HHRX

TX m WTX m j
2,

where PRX
TX is the received power of the signal of interest,TRX is the linear receiver filter, HRX

TXis the
channel matrix between the transmitter and receiver of interest, and WTX is the precoding matrix
applied at the transmitter.

The power of intra-user interference is given by

IsRX
TX m, j = PRX

TX TRX m j
HHRX

TX m WTX m 2− SRX
TX m, j .

The power of inter-user interference is given by

IoRX
TX m, j = ∑

k
∑

i ∈ Ω k
PRX

TX TRX m j
HHRX

TXi m WTXi m
2
,

where Ω k is the set of interfering transmitters in the kth basic service set (BSS)

The noise power is given by

N m, j = TRX m j
2N0,

where N0 is the noise power spectral density.

Generate a Channel Matrix per Subcarrier

The link quality model requires a channel matrix per subcarrier. Calculate the channel matrix from
the path gains returned from the fading channel model wlanTGaxChannel by using the
helperPerfectChannelEstimate() helper function. Efficiently generate path gains by setting the
ChannelFiltering property of wlanTGaxChannel to false.

sprev = rng('default'); % Seed random number generator and store previous state

% Get an HE OFDM configuration: 80 MHz channel bandwidth, 3.2 us guard
% interval
ofdmInfo = wlanHEOFDMInfo('HE-Data','CBW80',3.2);
k = ofdmInfo.ActiveFrequencyIndices;

% Configure channel to return path gains for one OFDM symbol
tgax = wlanTGaxChannel;
tgax.ChannelBandwidth = 'CBW80';
tgax.SampleRate = 80e6; % MHz
tgax.ChannelFiltering = false;
tgax.NumSamples = ofdmInfo.FFTLength+ofdmInfo.CPLength;

% Generate channel matrix per subcarrier for signal of interest
pathGains = tgax(); % Get path gains
chanInfo = info(tgax); % Get channel info for filter coefficients
chanFilter = chanInfo.ChannelFilterCoefficients;
Hsoi = helperPerfectChannelEstimate(pathGains,chanFilter, ...
 ofdmInfo.FFTLength,ofdmInfo.CPLength,ofdmInfo.ActiveFFTIndices);

 Physical Layer Abstraction for System-Level Simulation

7-91

% Generate channel matrix per subcarrier for interfering signal
reset(tgax); % Get a new channel realization
pathGains = tgax();
Hint = helperPerfectChannelEstimate(pathGains,chanFilter, ...
 ofdmInfo.FFTLength,ofdmInfo.CPLength,ofdmInfo.ActiveFFTIndices);

SINR Calculation

Calculate and visualize the post-equalizer SINR per subcarrier with the calculateSINR and
plotSINR helper functions.

Psoi = -20; % Signal of interest received power (dBm)
Pint = -45; % Interfering signal received power (dBm)
N0 = -85; % Noise power (dBm)
W = ones(ofdmInfo.NumTones,1); % Precoding matrix (assume no precoding)

sinr = calculateSINR(Hsoi,db2pow(Psoi-30),W,db2pow(N0-30),{Hint},db2pow(Pint-30),{W});

plotSINR(sinr,Hsoi,Psoi,Hint,Pint,N0,k);

TGax Evaluation Methodology Box 2 - Verify SINR Calibration

This section validates the SINR calculation by comparing the cumulative density function (CDF) of
per-subcarrier SINRs with calibration results provided by the TGax working group. We compare the
SINR calculation with results published by TGax [5 on page 7-104] for box 2, test 3: "downlink
transmission per basic channel access rule" for the residential scenario.

7 System-Level Simulation

7-92

For more information about the scenario, and for the results of long-term SINR calibration see the
“802.11ax PHY-Focused System-Level Simulation” on page 7-77 example.

The major simulation parameters are defined as either belonging to Physical Layer (PHY), Medium
Access Control Layer (MAC), scenario, or simulation. In this example the PHY and MAC parameters
are assumed to be the same for all nodes.

sinrCalibration = ; % Disable box 2 calibration
if sinrCalibration

PHYParams = struct;
PHYParams.TxPower = 20; % Transmitter power in dBm
PHYParams.TxGain = 0; % Transmitter antenna gain in dBi
PHYParams.RxGain = -2; % Receiver antenna gain in dBi
PHYParams.NoiseFigure = 7; % Receiver noise figure in dB
PHYParams.NumTxAntennas = 1; % Number of transmitter antennas
PHYParams.NumSTS = 1; % Number of space-time streams
PHYParams.NumRxAntennas = 1; % Number of receiver antennas
PHYParams.ChannelBandwidth = 'CBW80'; % Bandwidth of system
PHYParams.TransmitterFrequency = 5e9; % Transmitter frequency in Hz

MACParams = struct;
MACParams.NumChannels = 3; % Number of non-overlapping channels
MACParams.CCALevel = -70; % Transmission threshold in clear channel assessment algorithm (dBm)

The scenario parameters define the size and layout of the residential building as per [6 on page 7-
104]. Note only one receiver (STA) can be active at any given time.

ScenarioParams = struct;
ScenarioParams.BuildingLayout = [10 2 5]; % Number of rooms in [x,y,z] directions
ScenarioParams.RoomSize = [10 10 3]; % Size of each room in metres [x,y,z]
ScenarioParams.NumRxPerRoom = 1; % Number of receivers per room.

The NumDrops and NumTxEventsPerDrop parameters control the length of the simulation. In this
example, these parameters are configured for a short simulation. A 'drop' randomly places
transmitters and receivers within the scenario and selects the channel for a BSS. A 'transmission'
event randomly selects transmitters and receivers for transmissions according to the basic clear
channel assessment (CCA) rules defined in the evaluation methodology.

SimParams = struct;
SimParams.Test = 3; % Downlink transmission per basic channel access rule
SimParams.NumDrops = 3;
SimParams.NumTxEventsPerDrop = 2;

The function box2Simulation runs the simulation by performing these steps:

1 Randomly drop transmitters (APs) and receivers (STAs) within the scenario.
2 Calculate the large-scale path loss and generate frequency-selective TGax fading channels for all

non-negligible links.
3 For each transmission event, determine active transmitters and receivers based on CCA rules.
4 Calculate and return the SINR per subcarrier and the effective SINR for each active receiver as

per box 2, test 3 in the TGax evaluation methodology.

box2Results = box2Simulation(PHYParams,MACParams,ScenarioParams,SimParams);

 Physical Layer Abstraction for System-Level Simulation

7-93

Plot the CDF of the SINR per subcarrier and effective SINR (as defined in box 2, test 3) against
submitted calibration results.

tgaxCalibrationCDF(box2Results.sinr(:), ...
 ['SS1Box2Test' num2str(SimParams.Test) 'A'],'CDF of SINR per subcarrier');
tgaxCalibrationCDF(box2Results.sinrEff(:), ...
 ['SS1Box2Test' num2str(SimParams.Test) 'B'],'CDF of effective SINR per reception');

end

 Running drop #1/3 ...
 Generating 3518 fading channel realizations ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...
 Running drop #2/3 ...
 Generating 3366 fading channel realizations ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...
 Running drop #3/3 ...
 Generating 3750 fading channel realizations ...
 Running transmission event #1/2 ...
 Running transmission event #2/2 ...

7 System-Level Simulation

7-94

Increase the number of drops for a more accurate comparison.

Part B - Link Performance Model

The link performance model predicts the instantaneous PER given the SINR per subcarrier calculated
in Part A on page 7-90 and coding parameters used for the transmission.

Effective SINR mapping and averaging is used to compress the post-equalizer SINR per subcarrier
into a single effective SNR. The effective SNR is the SNR that provides an equivalent PER
performance with an additive white Gaussian noise (AWGN) channel as with the fading channel. A
pre-computed lookup table, generated with WLAN Toolbox™, provides the PER for an SNR under an
AWGN channel for a given channel coding, modulation scheme, and coding rate. Once the PER is
obtained, a random variable determines whether the packet has been received in error.

 Physical Layer Abstraction for System-Level Simulation

7-95

The TGax evaluation methodology PER estimation procedure is used in this example considering a
single interference event.

The effective SINR is calculated using the received bit mutual information rate (RBIR) mapping
function;

SINRef f = αϕ−1 1
NssNsc

∑ j = 1
Nss ∑m = 1

Nsc ϕ
SINR m, j

β , M , M .

• ϕ x, M is the RBIR mapping function, which transforms the SINR of each subcarrier to an
“information measure" for the modulation scheme M. The RBIR mapping function for BPSK,
QPSK, 16QAM, 64QAM and 256QAM is provided in [7 on page 7-104].

• ϕ−1 x, M is the inverse RBIR mapping function, which transforms an “information measure” back
to the SNR domain.

• Nss is the number of spatial-streams.
• Nsc is the number of subcarriers.
• SINR is the post-equalizer SINR of the mth subcarrier and jth spatial-stream.
• α and β are tuning parameters. The TGax evaluation methodology assumes no tuning therefore in

this example we assume these are set to 1.

The PER for a reference data length PERPL0 is obtained by looking up the appropriate AWGN table,
LUT, given the modulation and coding scheme (MCS), channel coding scheme, and reference data

length (PL0)

PERPL0 = LUT SNRef f ; MCS, coding scheme, PL0 ,

where the reference data length depends on the channel coding and data length for the transmission
PL.

PL0 =
32 bytes, BCC and PL < 400 bytes

1458 bytes, BCC and PL ≥ 400 bytes
1458 bytes, LDPC

.

The final estimated PER is then adjusted for the data length:

7 System-Level Simulation

7-96

PERPL = 1− 1− PERPL0

PL
PL0 .

The described method assumes the SINR is constant for the duration of the packet. The TGax
evaluation methodology describes techniques to deal with time-varying interference and estimate the
error rate of media access control protocol data units (MPDUs) within an aggregate MPDU (A-
MPDU).

Calculate Effective SINR

Calculate the effective SINR and the PER using the tgaxLinkPerformanceModel example helper
object.

Abstraction = tgaxLinkPerformanceModel;

The effectiveSINR method calculates the effective SINR given the modulation scheme and post
equalizer SINR per subcarrier and spatial stream.

format = ;

mcs = ; % MCS 6 is 64-QAM
[snreff,rbir_sc,rbir_av] = effectiveSINR(Abstraction,sinr,format,mcs);

The RBIR (information measure) per subcarrier obtained by mapping the SINR per subcarrier, and
the average RBIR are shown in the first figure subplot. The effective SINR per subcarrier is obtained
by inverse mapping the average RBIR and is shown in the second subplot.

plotRBIR(sinr,snreff,rbir_av,rbir_sc,k);

 Physical Layer Abstraction for System-Level Simulation

7-97

Estimate Packet Error Rate

Given the effective SNR, estimate the PER by linearly interpolating and extrapolating a pre-computed
AWGN link-level curve in the logarithmic domain, and adjusting for the data length. The
estimatePER method returns the final PER, per, and the AWGN lookup table used, lut .

channelCoding = ;

dataLength = ; % Bytes
[per,~,~,lut] = estimatePER(Abstraction,snreff,format,mcs,channelCoding,dataLength);

% Plot the AWGN lookup table and the estimated PER
figure;
semilogy(lut(:,1),lut(:,2));
grid on
hold on
plot(snreff,per,'d');
legend('AWGN LDPC lookup table','Estimated PER from effective SINR')
title('Packet error rate')
xlabel('SNR (dB)')
ylabel('PER')

7 System-Level Simulation

7-98

TGax Evaluation Methodology Box 0 - Verify Effective SNR vs PER Performance

To verify the entire physical-layer abstraction method, the PER from a link-level simulation is
compared with the PER estimates using the abstraction. This follows steps 2 and 3 of box 0 testing in
the TGax Evaluation Methodology. An 802.11ax single-user link is modeled with perfect
synchronization, channel estimation, and no impairments apart from a fading TGax channel model
and AWGN. Only errors within data portion of a packet are considered.

In this example the SNRs to simulate are selected based on the MCS, number of transmit and receive
antennas, and channel model for the given PHY configuration. The number of space-time streams is
assumed to equal the number of transmit antennas. The simulation is configured for a short run; for
more meaningful results you should increase the number of packets to simulate.

verifyAbstraction = ; % Disable box 0 simulation
if verifyAbstraction

% Simulation Parameters
mcs = [4 8]; % Vector of MCS to simulate between 0 and 11
numTxRx = [1 1]; % Matrix of MIMO schemes, each row is [numTx numRx]
chan = "Model-D"; % String array of delay profiles to simulate
maxNumErrors = 1e1; % The maximum number of packet errors at an SNR point
maxNumPackets = 1e2; % The maximum number of packets at an SNR point

% Fixed PHY configuration for all simulations
cfgHE = wlanHESUConfig;
cfgHE.ChannelBandwidth = 'CBW20'; % Channel bandwidth

 Physical Layer Abstraction for System-Level Simulation

7-99

cfgHE.APEPLength = 1000; % Payload length in bytes
cfgHE.ChannelCoding = 'LDPC'; % Channel coding

% Generate a structure array of simulation configurations. Each element is
% one SNR point to simulate.
simParams = getBox0SimParams(chan,numTxRx,mcs,cfgHE,maxNumErrors,maxNumPackets);

% Simulate each configuration
results = cell(1,numel(simParams));
% parfor isim = 1:numel(simParams) % Use 'parfor' to speed up the simulation
for isim = 1:numel(simParams)
 results{isim} = box0Simulation(simParams(isim));
end

The suitability of the abstraction is determined by comparing the PER calculated by link-level
simulation and abstraction. The first figure compares the PERs at each SNR simulated.

plotPERvsSNR(simParams,results);

The second figure compares the number of successfully decoded link-level simulation packets with an
effective SNR against the reference AWGN curve. If the abstraction is successful the PER should
follow the AWGN curve.

plotPERvsEffectiveSNR(simParams,results);
end

Model-D 1-by-1, MCS 4, SNR 11 completed after 14 packets, PER:0.78571
Model-D 1-by-1, MCS 4, SNR 15 completed after 22 packets, PER:0.5
Model-D 1-by-1, MCS 4, SNR 19 completed after 100 packets, PER:0.05
Model-D 1-by-1, MCS 4, SNR 23 completed after 100 packets, PER:0.02
Model-D 1-by-1, MCS 4, SNR 27 completed after 100 packets, PER:0
Model-D 1-by-1, MCS 8, SNR 21.5 completed after 13 packets, PER:0.84615
Model-D 1-by-1, MCS 8, SNR 25.5 completed after 23 packets, PER:0.47826
Model-D 1-by-1, MCS 8, SNR 29.5 completed after 100 packets, PER:0.03
Model-D 1-by-1, MCS 8, SNR 33.5 completed after 100 packets, PER:0.02
Model-D 1-by-1, MCS 8, SNR 37.5 completed after 100 packets, PER:0

7 System-Level Simulation

7-100

 Physical Layer Abstraction for System-Level Simulation

7-101

rng(sprev) % Restore random state

In this example the tuning parameters α and β are set to 1. These could be tuned to further improve
the accuracy of the abstraction if desired. The results when simulating 1000 packet errors or 100000
packets for MCS 0 to 9 for a 1458-byte packet without tuning is shown.

7 System-Level Simulation

7-102

 Physical Layer Abstraction for System-Level Simulation

7-103

Further Exploration

To see how the 802.11ax physical layer abstraction described in this example can be used in a
system-level simulation, see the “802.11ax System-Level Simulation with Physical Layer Abstraction”
on page 7-66 example.

Selected Bibliography

1 IEEE P802.11ax™/D4.1 Draft Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 6: Enhancements for High Efficiency WLAN.

2 IEEE 802.11-14/0571r12 - 11ax Evaluation Methodology.
3 Brueninghaus, Karsten, et al. "Link performance models for system level simulations of

broadband radio access systems." 2005 IEEE 16th International Symposium on Personal, Indoor
and Mobile Radio Communications. Vol. 4. IEEE, 2005.

4 Mehlführer, Christian, et al. "The Vienna LTE simulators-Enabling reproducibility in wireless
communications research." EURASIP Journal on Advances in Signal Processing 2011.1 (2011):
29.

5 IEEE 802.11-14/0800r30 - Box 1 and Box 2 Calibration Results.
6 IEEE 802.11-14/0980r16 - TGax Simulation Scenarios.
7 IEEE 802.11-14/1450r0 - Box 0 Calibration Results

See Also

More About
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “802.11ax Multinode System-Level Simulation of Residential Scenario” on page 7-40

7 System-Level Simulation

7-104

Generate and Visualize FTP Application Traffic Pattern

This example shows how to generate a file transfer protocol (FTP) application traffic pattern based on
the IEEE® 802.11ax™ Evaluation Methodology [1 on page 7-110] and the 3GPP TR 36.814
specification [2 on page 7-110].

FTP Application Traffic Model

Multinode communication systems involve modeling of different application traffic models. Each
application is characterized by parameters such as the data rate, packet inter arrival time, and packet
size. To evaluate various algorithms and protocols, standardization bodies such as IEEE and 3GPP
define certain application traffic patterns such as Voice over Internet Protocol (VoIP), video
conferencing, and FTP. This example generates and visualizes an FTP application traffic pattern.

The FTP application traffic pattern is modeled as a sequence of file transfers separated by reading
time. The reading time specifies the time interval between two successive file transfers. The file is
generated as multiple packets separated by packet inter arrival time. The packet inter arrival time
specifies the time interval between two successive packet transfers.

The 11ax Evaluation Methodology [1 on page 7-110] specifies this FTP application traffic model:

• Local FTP traffic model - This model is characterized by truncated Lognormal file size and
exponential reading time.

The 3GPP TR 36.814 specification [2 on page 7-110] specifies these FTP application traffic models:

• FTP traffic model 2 - This model is characterized by 2/0.5 megabytes file size and exponential
reading time. This figure shows the traffic pattern of this FTP model.

• FTP traffic model 3 - This model is characterized by a 0.5 megabytes file, exponential reading
time, and Poisson packet arrival rate. This figure shows the traffic pattern of this FTP model.

 Generate and Visualize FTP Application Traffic Pattern

7-105

This example demonstrates the local FTP traffic model specified in 11-ax Evaluation Methodology [1
on page 7-110]. Similarly, you can use the FTP traffic models 2 and 3 specified in 3GPP TR 36.814
specification [2 on page 7-110] using the file size and packet arrival rate properties.

Configure FTP Application Traffic Pattern Object

Check if the 'Communications Toolbox Wireless Network Simulation Library' support package is
installed.

wirelessnetworkSupportPackageCheck

Create a configuration object to generate the FTP application traffic pattern.

% Reset the random number generator
rng('default');

% Create FTP application traffic pattern object with default properties
ftpObj = networkTrafficFTP;

% Set exponential distribution mean value for reading time in milliseconds
ftpObj.ExponentialMean = 50;

% Set truncated Lognormal distribution mu value for file size calculation
ftpObj.LogNormalMu = 10;

% Set truncated Lognormal distribution sigma value for file size calculation
ftpObj.LogNormalSigma = 1;

% Set truncated Lognormal distribution upper limit in Megabytes
ftpObj.UpperLimit = 5;

% Display object
disp(ftpObj);

7 System-Level Simulation

7-106

 networkTrafficFTP with properties:

 LogNormalMu: 10
 LogNormalSigma: 1
 UpperLimit: 5
 ExponentialMean: 50
 PacketInterArrivalTime: 0
 GeneratePacket: 0

Generate and Visualize FTP Application Traffic Pattern

Generate FTP application traffic pattern using the generate object function of the
networkTrafficFTP object.

% Set simulation time in milliseconds
simTime = 10000;

% Set step time in milliseconds
stepTime = 1;

% Validate simTime, simTime must be greater than or equal to stepTime
validateattributes(simTime,{'numeric'}, ...
 {'real','scalar','finite','>=',stepTime});

% Time after which the generate method must be invoked again
nextInvokeTime = 0;

% Generated packet count
packetCount = 0;

% Initialize arrays to store outputs for visualization
% Packet generation times in milliseconds
generationTime = zeros(5000,1);

% Time interval between two consecutive packet transfers in milliseconds
packetIntervals = zeros(5000,1);

% Packet sizes in bytes
packetSizes = zeros(5000,1);

% Loop over the simulation time, generating FTP application traffic
% pattern and saving the dt and packet size values for visualization.
while simTime
 if nextInvokeTime <= 0 % Time to generate the packet
 packetCount = packetCount+1; % Increment packet count
 % Call generate method and store outputs for visualization
 [packetIntervals(packetCount), packetSizes(packetCount)] = ...
 generate(ftpObj);
 % Set next invoke time
 nextInvokeTime = packetIntervals(packetCount);
 % Store packet generation time for visualization
 generationTime(packetCount+1) = ...
 generationTime(packetCount) + packetIntervals(packetCount);
 end

 % Update next invoke time
 nextInvokeTime = nextInvokeTime - stepTime;

 Generate and Visualize FTP Application Traffic Pattern

7-107

 % Update simulation time
 simTime = simTime - stepTime;
end

Visualize the generated FTP application traffic pattern. In this plot, dt is the time interval between
two successive FTP application packets.

% Packet Number Versus Packet Intervals (dt)
% Stem graph to see packet intervals
pktIntervalsFig = figure(Name='Packet intervals',NumberTitle='off');
pktIntervalsAxes = axes(pktIntervalsFig);
stem(pktIntervalsAxes,packetIntervals(1:packetCount));
title(pktIntervalsAxes,'Packet Number Versus dt');
xlabel(pktIntervalsAxes,'Packet Number');
ylabel(pktIntervalsAxes,'dt in milliseconds');

% Plot to see different packet sizes
pktSizesFig = figure(Name='Packet sizes',NumberTitle='off');
pktSizesAxes = axes(pktSizesFig);
plot(pktSizesAxes,packetSizes(1:packetCount),Marker='o');
title(pktSizesAxes,'Packet Number Versus Packet Size');
xlabel(pktSizesAxes,'Packet Number');
ylabel(pktSizesAxes,'Packet Size in Bytes');

7 System-Level Simulation

7-108

% Stem graph of FTP application traffic pattern (Packet sizes of
% different files at different packet generation times)
ftpPatternFig = figure(Name='FTP application traffic pattern', ...
 NumberTitle='off');
ftpPatternAxes = axes(ftpPatternFig);
stem(ftpPatternAxes,generationTime(1:packetCount), ...
 packetSizes(1:packetCount),Marker='o');
title(ftpPatternAxes,'Packet Generation Time Versus Packet Size');
ylabel(ftpPatternAxes,'Packet Size in Bytes');
xlabel(ftpPatternAxes,'Time in milliseconds');

 Generate and Visualize FTP Application Traffic Pattern

7-109

Further Exploration

This example generates an FTP traffic pattern as per the 11ax Evaluation Methodology [1 on page 7-
110] and 3GPP specification [2 on page 7-110]. Similarly, you can use networkTrafficVoIP,
networkTrafficOnOff, and networkTrafficVideoConference objects to generate VoIP, On-Off,
video conferencing application traffic patterns, respectively. You can use these different application
traffic patterns in system-level simulations to model the real-world data traffic.

References

[1] IEEE 802.11-14/0571r12 . "11ax Evaluation Methodology". IEEE P802.11. Wireless LANs.

[2] 3GPP TR 36.814. "Evolved Universal Terrestrial Radio Access (E-UTRA). Further advancements
for E-UTRA physical layer aspects". 3rd Generation Partnership Project; Technical Specification
Group Radio Access Network.

See Also
Objects
networkTrafficFTP | networkTrafficOnOff | networkTrafficVideoConference |
networkTrafficVoIP

7 System-Level Simulation

7-110

Simulate an 802.11ax Network with Uplink and Downlink
Application Traffic

This example shows how to create, configure, and simulate an IEEE® 802.11ax™ network with
uplink (UL) and downlink (DL) application traffic.

Using this example, you can:

1 Create and configure an 802.11ax network consisting of an access point (AP) and a station (STA).
2 Associate the STA with the AP.
3 Generate, configure, and add UL and DL on-off application traffic between the STA and the AP.
4 Simulate the 802.11ax network and visualize the statistics.

The example simulates this scenario.

Check if the Communications Toolbox™ Wireless Network Simulation Library support package is
installed. If the support package is not installed, MATLAB® returns an error with a link to download
and install the support package.

wirelessnetworkSupportPackageCheck;

Set the seed for the random number generator to 1. The seed value controls the pattern of random
number generation. The random number generated by the seed value impacts several processes
within the simulation including backoff counter selection at the MAC layer and predicting packet
reception success at the physical layer. To improve the accuracy of your simulation results, after
running the simulation, you can change the seed value, run the simulation again, and average the
results over multiple simulations.

rng(1,"combRecursive");

Specify the simulation time in seconds.

simulationTime = 0.2;

Initialize the wireless network simulator.

networkSimulator = wirelessNetworkSimulator.init;

Specify the number of nodes in the network. Set the positions of the nodes as a vector. Units are in
meters. Each row of the vector specifies the x-, y-, and z- Cartesian coordinates of a node, starting
from the first node.

numNodes = 2;
nodePositions = [0 0 0;0 -20 0];

Set the configuration parameters of the AP and the STA by using the wlanDeviceConfig object.

 Simulate an 802.11ax Network with Uplink and Downlink Application Traffic

7-111

accessPointCfg = wlanDeviceConfig(Mode="AP",MCS=2,TransmitPower=15); % AP device configuration
stationCfg = wlanDeviceConfig(Mode="STA",MCS=2,TransmitPower=15); % STA device configuration

Create an AP and a STA from the specified configuration by using the wlanNode object.

accessPoint = wlanNode(Name="AP", ...
 Position=nodePositions(1,:), ...
 DeviceConfig=accessPointCfg);

stations = wlanNode(Name="STA", ...
 Position=nodePositions(2,:), ...
 DeviceConfig=stationCfg);

Create an 802.11ax network consisting of an AP and a STA.

nodes = [accessPoint stations];

Associate the STA with the AP.

associateStations(accessPoint,stations);

Generate an on-off application traffic pattern by using the networkTrafficOnOff object. Configure
the on-off application traffic by specifying the application data rate and packet size. Add UL and DL
application traffic between the AP and the STA by using the addTrafficSource object function.

Alternatively, you can configure full buffer application traffic between the APs and STAs by using the
FullBufferTraffic input of the associateStations object function.

trafficSourceUL = networkTrafficOnOff(DataRate=100000,PacketSize=1500);
addTrafficSource(stations,trafficSourceUL,DestinationNode=accessPoint,AccessCategory=0); % UL traffic from STA to AP

trafficSourceDL = networkTrafficOnOff(DataRate=100000,PacketSize=1500);
addTrafficSource(accessPoint,trafficSourceDL,DestinationNode=stations,AccessCategory=0); % DL traffic from AP to STA

Add nodes to the wireless network simulator.

addNodes(networkSimulator,nodes);

Run the network simulation for the specified simulation time.

run(networkSimulator,simulationTime);

Custom channel model is not added. Using free space path loss (fspl) model as the default channel model.

At each node, the simulation captures the statistics by using the statistics object function. The
stats variable captures the application statistics, MAC layer statistics, physical layer statistics, and
mesh forwarding statistics for each node. For more information about these statistics, see the “WLAN
System-Level Simulation Statistics” on page 7-114 topic.

stats = statistics(nodes)

stats=1×2 struct array with fields:
 Name
 ID
 App
 MAC
 PHY
 Mesh

7 System-Level Simulation

7-112

See Also
Functions
statistics

Objects
wlanDeviceConfig | wlanNode

Related Examples
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “Simulate an 802.11ax Network with Full MAC and Abstracted PHY” on page 7-118
• “Simulate a Multiband 802.11ax Network” on page 7-124
• “Create, Configure, and Simulate an 802.11ax Mesh Network” on page 7-121
• “Simulate an 802.11ax Hybrid Mesh Network” on page 7-127

 Simulate an 802.11ax Network with Uplink and Downlink Application Traffic

7-113

WLAN System-Level Simulation Statistics
The WLAN system-level simulation captures these statistics as a structure at each node. This
structure is returned as an output by the statistics object function of the wlanNode object.

Default Statistics
If you use the first syntax described on the statistics reference page, these tables describe the
function's output.

Statistics Structure

Structure Field Description
Name Name of the WLAN node, returned as a string

scalar.
ID ID of the WLAN node, returned as a numeric

scalar.
App Application statistics, returned as a structure.
MAC MAC layer statistics, returned as a structure. If

the node contains multiple devices, this field
returns an array of structures.

Mesh Mesh forwarding statistics, returned as a
structure. If the node contains multiple devices,
this field returns an array of structures.

PHY Physical layer (PHY) statistics, returned as a
structure. If the node contains multiple devices,
this field returns an array of structures.

App Structure

Structure Field Description
TransmittedPackets Total number of packets transmitted by the

application layer
TransmittedBytes Total number of bytes transmitted from the

application layer
ReceivedPackets Total number of packets received at the

application layer
ReceivedBytes Total number of bytes received at the application

layer

7 System-Level Simulation

7-114

MAC Structure

Structure Field Description
TransmittedDataFrames Number of data MPDUs transmitted from the

MAC layer, including retransmissions
TransmittedPayloadBytes Total number of MSDU bytes transmitted from

the MAC layer that are acknowledged
SuccessfulDataTransmissions Number of acknowledged data MPDUs
RetransmittedDataFrames Number of data MPDUs retransmitted from MAC

layer
TransmittedAMPDUs Total number of A-MPDUs transmitted from the

MAC layer, including retransmissions
TransmittedRTSFrames Total number of RTS frames transmitted from the

MAC layer
TransmittedMURTSFrames Total number of MU-RTS frames transmitted from

the MAC layer
TransmittedCTSFrames Total number of CTS frames transmitted from the

MAC layer
TransmittedMUBARFrames Total number of MU-BAR frames transmitted

from the MAC layer
TransmittedAckFrames Total number of Ack frames transmitted from the

MAC layer
TransmittedBlockAckFrames Total number of BlockAck frames transmitted

from the MAC layer
ReceivedDataFrames Total number of data MPDUs received by the

MAC layer
ReceivedPayloadBytes Total number of MSDU bytes received by the

MAC layer
ReceivedAMPDUs Total number of A-MPDUs received by the MAC

layer, with at least one valid subframe
ReceivedRTSFrames Total number of RTS frames received by the MAC

layer
ReceivedMURTSFrames Total number of MU-RTS frames received by the

MAC layer
ReceivedCTSFrames Total number of CTS frames received by the MAC

layer
ReceivedMUBARFrames Total number of MU-BAR frames received by the

MAC layer
ReceivedAckFrames Total number of Ack frames received by the MAC

layer
ReceivedBlockAckFrames Total number of BlockAck frames received by the

MAC layer
ReceivedFCSValidFrames Total number of MPDUs received by the MAC

layer with valid FCS

 WLAN System-Level Simulation Statistics

7-115

Structure Field Description
ReceivedFCSFails Total number of MPDUs dropped by the MAC

layer due to FCS fails
ReceivedDelimiterCRCFails Total number of frames dropped by the MAC

layer due to delimiter CRC fails in the A-MPDU
subframes

Mesh Structure

Structure Field Description
PacketsToBeForwarded Number of MSDUs to be forwarded
PayloadBytesToBeForwarded Number of bytes of data to be forwarded
DroppedPackets Number of MSDUs dropped due to:

• Insufficient mesh forward hop count
• No further path found for forwarding
• Receiving a duplicate MSDU

PHY Structure

Structure Field Description
TransmittedPackets Total number of packets transmitted by the PHY
TransmittedPayloadBytes Total number of payload (PSDU) bytes

transmitted by the PHY
ReceivedPackets Total number of packets received at the PHY
ReceivedPayloadBytes Total number of payload (PSDU) bytes received

by the PHY
DroppedPackets Total number of packets dropped by the PHY

receiver due to:

• Low signal power
• Preamble, header, or payload decode failures

Additional Statistics
If you use the second syntax detailed on the statistics reference page, the function returns these
statistics in addition to those described above.

App Structure Additional Fields

Structure Field Description
Destinations This is an array of structures. Each structure

holds statistics that correspond to the
destinations of traffic sources that you have
added to the node.

7 System-Level Simulation

7-116

Fields of Structures in the Destinations Array

Structure Field Description
NodeID Destination node identifier
NodeName Destination node name
TransmittedPackets Number of transmitted packets
TransmittedBytes Number of transmitted bytes

MAC Structure Additional Fields

Structure Field Description
AccessCategories This is an array of structures of size 1-by-4. Each

structure holds statistics that correspond to one
of the four access categories. The four entries of
the array correspond to Best Effort, Background,
Video, and Voice, respectively.

Fields of Structures in the Access Categories Array

Structure Field Description
TransmittedDataFrames Total number of data MPDUs transmitted for the

access category from the MAC layer, including
retransmissions

TransmittedPayloadBytes Total number of MSDU bytes transmitted for the
access category from the MAC layer that are
acknowledged

SuccessfulDataTransmissions Total number of acknowledged data MPDUs for
the access category

RetransmittedDataFrames Total number of data MPDUs retransmitted for
the access category from the MAC layer

RecievedDataFrames Total number of data MPDUs received for the
access category by the MAC layer.

ReceivedPayloadBytes Total number of MSDU bytes received for the
access category by the MAC layer

See Also
Functions
statistics

Objects
wlanDeviceConfig | wlanNode

 WLAN System-Level Simulation Statistics

7-117

Simulate an 802.11ax Network with Full MAC and Abstracted
PHY

This example shows how to create, configure, and simulate an IEEE® 802.11ax™ network with a full
or abstracted model of medium access control (MAC) and the physical layer (PHY). At the transmitter
and receiver, modeling full MAC processing involves complete MAC frame generation at the MAC
layer. Similarly, modeling full PHY processing involves complete operations related to waveform
transmission and reception through a fading channel. When you simulate large networks, full MAC
and PHY processing is computationally expensive. In an abstracted MAC, the node does not generate
or decode any frames at the MAC layer. Similarly, in an abstracted PHY, the node does not generate
or decode any waveforms at the PHY. MAC and PHY abstraction enables you to minimize the
complexity and duration of the system-level simulations.

Using this example, you can:

1 Create and configure a two-node 802.11ax network consisting of one access point (AP) and one
station (STA).

2 Associate the STA with the AP and add full buffer uplink (UL) application traffic.
3 Configure the AP and STA to implement full MAC and an abstracted PHY.
4 Simulate the 802.11ax network and visualize the statistics.

Check if the Communications Toolbox™ Wireless Network Simulation Library support package is
installed. If the support package is not installed, MATLAB® returns an error with a link to download
and install the support package.

wirelessnetworkSupportPackageCheck;

Set the seed for the random number generator to 1. The seed value controls the pattern of random
number generation. The random number generated by the seed value impacts several processes
within the simulation including backoff counter selection at the MAC layer and predicting packet
reception success at the PHY. To improve the accuracy of your simulation results, after running the
simulation, you can change the seed value, run the simulation again, and average the results over
multiple simulations.

rng(1,"combRecursive");

Specify the simulation time in seconds.

simulationTime = 0.3;

Initialize the wireless network simulator.

networkSimulator = wirelessNetworkSimulator.init;

Specify the number of nodes in the network. Set the positions of the nodes as a vector. Units are in
meters. Each row of the vector specifies the x-, y-, and z- Cartesian coordinates of a node, starting
from the first node.

numNodes = 2;
nodePositions = [0 0 0;20 20 20];

The MACFrameAbstraction and PHYAbstractionMethod properties of the wlanNode object
enable you to configure MAC and PHY layer abstraction. The valid values for these properties are:

7 System-Level Simulation

7-118

• MACFrameAbstraction — false (default) or true. To use the full MAC, set this property to
true.

• PHYAbstractionMethod — "tgax-evaluation-methodology" (default), "tgax-mac-
calibration", or "none". To use the abstracted PHY, set this property to "tgax-evaluation-
methodology" or "tgax-mac-calibration". If you set this property to "tgax-evaluation-
methodology", the PHY estimates the performance of a link with the TGax channel model by
using an effective signal-to-interference-plus-noise-ratio (SINR) mapping. If you set this property
to "tgax-mac-calibration", the PHY assumes a packet failure due to interference without
actually calculating the link performance. To use the full PHY, set this property to "none".

MACFrameAbstraction = true;
PHYAbstractionMethod = "tgax-mac-calibration";

Set the configuration parameters of the AP and the STA by using the wlanDeviceConfig object.

accessPointCfg = wlanDeviceConfig(Mode="AP",MCS=2,TransmitPower=15); % AP device configuration
stationCfg = wlanDeviceConfig(Mode="STA",MCS=2,TransmitPower=15); % STA device configuration

Create an AP and a STA from the specified configuration by using the wlanNode object.

accessPoint = wlanNode(Name="AP", ...
 Position=nodePositions(1,:), ...
 DeviceConfig=accessPointCfg, ...
 PHYAbstractionMethod=PHYAbstractionMethod, ...
 MACFrameAbstraction=MACFrameAbstraction);

station = wlanNode(Name=["STA"], ...
 Position=nodePositions(2,:), ...
 DeviceConfig=stationCfg, ...
 PHYAbstractionMethod=PHYAbstractionMethod, ...
 MACFrameAbstraction=MACFrameAbstraction);

Create an 802.11ax network consisting of an AP and a STA.

nodes = [accessPoint station];

Associate the STA with the AP and add full buffer UL application traffic.

associateStations(accessPoint,station,FullBufferTraffic="UL");

Add nodes to the wireless network simulator.

addNodes(networkSimulator,nodes);

Run the network simulation for the specified simulation time.

run(networkSimulator,simulationTime);

Custom channel model is not added. Using free space path loss (fspl) model as the default channel model.

At each node, the simulation captures the statistics by using the statistics object function. The
stats variable captures the application statistics, MAC layer statistics, physical layer statistics, and
mesh forwarding statistics for each node. For more information about these statistics, see the “WLAN
System-Level Simulation Statistics” on page 7-114 topic.

stats = statistics(nodes)

stats=1×2 struct array with fields:
 Name

 Simulate an 802.11ax Network with Full MAC and Abstracted PHY

7-119

 ID
 App
 MAC
 PHY
 Mesh

See Also
Functions
statistics

Objects
wlanDeviceConfig | wlanNode

Related Examples
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “Simulate an 802.11ax Network with Uplink and Downlink Application Traffic” on page 7-111
• “Simulate a Multiband 802.11ax Network” on page 7-124
• “Create, Configure, and Simulate an 802.11ax Mesh Network” on page 7-121
• “Simulate an 802.11ax Hybrid Mesh Network” on page 7-127

7 System-Level Simulation

7-120

Create, Configure, and Simulate an 802.11ax Mesh Network

This example shows how to create, configure, and simulate an IEEE® 802.11ax™ mesh network.

Using this example, you can:

1 Create and configure an 802.11ax mesh network consisting of four mesh nodes.
2 Generate, configure, and add on-off application traffic between the mesh nodes.
3 Add mesh paths to route application traffic from the source node to the sink node.
4 Simulate the 802.11ax mesh network and visualize the statistics.

The example simulates this mesh network scenario.

The mesh node 1 (source) generates and transmits application traffic to mesh node 4 (sink) through
intermediate relay nodes, mesh node 2, and mesh node 3. The example simulates mesh network
communication in the 5 GHz band.

Check if the Communications Toolbox™ Wireless Network Simulation Library support package is
installed. If the support package is not installed, MATLAB® returns an error with a link to download
and install the support package.

wirelessnetworkSupportPackageCheck;

Set the seed for the random number generator to 1. The seed value controls the pattern of random
number generation. The random number generated by the seed value impacts several processes
within the simulation including backoff counter selection at the MAC layer and predicting packet
reception success at the physical layer. To improve the accuracy of your simulation results, after
running the simulation, you can change the seed value, run the simulation again, and average the
results over multiple simulations.

rng(1,"combRecursive");

Specify the simulation time in seconds.

simulationTime = 0.5;

Initialize the wireless network simulator.

networkSimulator = wirelessNetworkSimulator.init;

Specify the names and positions of the mesh nodes.

nodeNames = ["MeshNode1","MeshNode2","MeshNode3","MeshNode4"];
nodePositions = [10 0 0; 20 0 0; 30 0 0; 40 0 0]; % x-, y-, and z-coordinates, in meters

 Create, Configure, and Simulate an 802.11ax Mesh Network

7-121

Set the configuration parameters of the mesh nodes by using the wlanDeviceConfig object.

meshNodeCfg = wlanDeviceConfig(Mode="mesh",BandAndChannel=[5 36],MCS=7,TransmitPower=15);

Create the mesh nodes from the specified configuration by using the wlanNode object.

meshNodes = wlanNode(Name=nodeNames, ...
 Position=nodePositions, ...
 DeviceConfig=meshNodeCfg);

Generate an on-off application traffic pattern by using the networkTrafficOnOff object. Configure
the on-off application traffic by specifying the application data rate and packet size. Add application
traffic from mesh node 1 to mesh node 4.

trafficSource = networkTrafficOnOff(DataRate=50000,PacketSize=1500);
addTrafficSource(meshNodes(1),trafficSource,DestinationNode=meshNodes(4));

Add mesh paths to propagate the application traffic from the source mesh node 1 to the destination
mesh node 4. The application traffic flows from mesh node 1 to mesh node 4 through the intermediate
relay nodes mesh node 2 and mesh node 3.

addMeshPath(meshNodes(1),meshNodes(4),meshNodes(2));
addMeshPath(meshNodes(2),meshNodes(4),meshNodes(3));
addMeshPath(meshNodes(3),meshNodes(4));

Add nodes to the wireless network simulator.

addNodes(networkSimulator,meshNodes);

Run the network simulation for the specified simulation time.

run(networkSimulator,simulationTime);

Custom channel model is not added. Using free space path loss (fspl) model as the default channel model.

At each mesh node, the simulation captures the statistics by using the statistics object function.
The stats variable captures the application statistics, MAC layer statistics, physical layer statistics,
and mesh forwarding statistics for each node. For more information about these statistics, see the
“WLAN System-Level Simulation Statistics” on page 7-114 topic.

stats = statistics(meshNodes)

stats=1×4 struct array with fields:
 Name
 ID
 App
 MAC
 PHY
 Mesh

See Also
Functions
statistics

7 System-Level Simulation

7-122

Objects
wlanDeviceConfig | wlanNode

Related Examples
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “Simulate an 802.11ax Network with Uplink and Downlink Application Traffic” on page 7-111
• “Simulate an 802.11ax Network with Full MAC and Abstracted PHY” on page 7-118
• “Simulate a Multiband 802.11ax Network” on page 7-124
• “Simulate an 802.11ax Hybrid Mesh Network” on page 7-127

 Create, Configure, and Simulate an 802.11ax Mesh Network

7-123

Simulate a Multiband 802.11ax Network

This example shows how to create, configure, and simulate an IEEE® 802.11ax™ network operating
in the 2.4 GHz and 5 GHz band.

Using this example, you can:

1 Create and configure an 802.11ax network consisting of a multiband access point (AP) and four
stations (STAs).

2 Configure the multiband AP to operate in the 2.4 GHz and 5 GHz bands.
3 Associate the STAs with the AP and add full buffer downlink (DL) application traffic between

them.
4 Simulate the multiband band 802.11ax network.

The example simulates this scenario.

STA1 and STA 2 are associated with the multiband AP in the 2.4 GHz band. STA3 and STA4 are
associated with the multiband AP in the 5 GHz band. The multiband AP transmits DL application
traffic to STA1 and STA4.

7 System-Level Simulation

7-124

Check if the Communications Toolbox™ Wireless Network Simulation Library support package is
installed. If the support package is not installed, MATLAB® returns an error with a link to download
and install the support package.

wirelessnetworkSupportPackageCheck;

Set the seed for the random number generator to 1. The seed value controls the pattern of random
number generation. The random number generated by the seed value impacts several processes
within the simulation including backoff counter selection at the MAC layer and predicting packet
reception success at the physical layer. To improve the accuracy of your simulation results, after
running the simulation, you can change the seed value, run the simulation again, and average the
results over multiple simulations.

rng(1,"combRecursive");

Specify the simulation time in seconds.

simulationTime = 0.5;

Initialize the wireless network simulator.

networkSimulator = wirelessNetworkSimulator.init;

Configure the multiband AP to operate in the 2.4 GHz and 5 GHz bands.

accessPointCfg1 = wlanDeviceConfig(Mode="AP",BandAndChannel=[2.4 11]);
accessPointCfg2 = wlanDeviceConfig(Mode="AP",BandAndChannel=[5 36]);

Create a multiband AP from the specified configuration by using the wlanNode object.

accessPoint = wlanNode(Position=[0 0 0],DeviceConfig=[accessPointCfg1,accessPointCfg2]);

Configure STA1 and STA2 to operate in the 2.4 GHz band. Configure STA3 and STA4 to operate in the
5 GHz band.

stationCfg1 = wlanDeviceConfig(Mode="STA",BandAndChannel=[2.4 11]);
stationCfg2 = wlanDeviceConfig(Mode="STA",BandAndChannel=[5 36]);

Create STA1, STA2, STA3, and STA4 from the specified configuration.

stations1 = wlanNode(Position=[10 0 0; 0 10 0],DeviceConfig=stationCfg1); % STA1 and STA2 on 2.4 GHz band
stations2 = wlanNode(Position=[0 0 10; 10 10 0],DeviceConfig=stationCfg2); % STA3 and STA4 on 5 GHz band

Associate STAs with the AP and add full buffer application traffic between them.

associateStations(accessPoint,[stations1(1),stations2(2)],FullBufferTraffic="DL");

Add nodes to the wireless network simulator.

addNodes(networkSimulator,[accessPoint,stations1,stations2]);

Run the network simulation for the specified simulation time.

run(networkSimulator,simulationTime);

Custom channel model is not added. Using free space path loss (fspl) model as the default channel model.

At each node, the simulation captures the statistics by using the statistics object function. The
stats variable captures the application statistics, MAC layer statistics, physical layer statistics, and

 Simulate a Multiband 802.11ax Network

7-125

mesh forwarding statistics for each node. For more information about these statistics, see the “WLAN
System-Level Simulation Statistics” on page 7-114 topic.

stats = statistics([accessPoint,stations1,stations2])

stats=1×5 struct array with fields:
 Name
 ID
 App
 MAC
 PHY
 Mesh

See Also
Functions
statistics

Objects
wlanDeviceConfig | wlanNode

Related Examples
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “Simulate an 802.11ax Network with Uplink and Downlink Application Traffic” on page 7-111
• “Simulate an 802.11ax Network with Full MAC and Abstracted PHY” on page 7-118
• “Create, Configure, and Simulate an 802.11ax Mesh Network” on page 7-121
• “Simulate an 802.11ax Hybrid Mesh Network” on page 7-127

7 System-Level Simulation

7-126

Simulate an 802.11ax Hybrid Mesh Network

This example shows how to create, configure, and simulate an IEEE® 802.11ax™ hybrid mesh
network.

Using this example, you can:

1 Create and configure an 802.11ax hybrid mesh network consisting of three mesh access points
(APs) and three stations (STAs).

2 Configure the mesh APs to operate in the 2.4 GHz and 6 GHz bands.
3 Associate the STAs with the mesh APs.
4 Generate, configure, and add on-off application traffic between an AP and a STA.
5 Add mesh paths to route the application traffic from the source to the destination.
6 Simulate the 802.11ax hybrid mesh network.

The example simulates this scenario.

STA1, STA2, and STA3 are associated with mesh AP1, mesh AP2, and mesh AP3, respectively. Mesh
AP1, mesh AP2, and mesh AP3 together consitute the mesh network. For the mesh network, STA1,
STA2, and STA3 are nonmesh nodes. Mesh AP1 is the source that generates and transmits the
application traffic to STA3 through the intermediate relay nodes mesh AP2 and mesh AP3.

Check if the Communications Toolbox™ Wireless Network Simulation Library support package is
installed. If the support package is not installed, MATLAB® returns an error with a link to download
and install the support package.

wirelessnetworkSupportPackageCheck;

 Simulate an 802.11ax Hybrid Mesh Network

7-127

Set the seed for the random number generator to 1. The seed value controls the pattern of random
number generation. The random number generated by the seed value impacts several processes
within the simulation including backoff counter selection at the MAC layer and predicting packet
reception success at the physical layer. To improve the accuracy of your simulation results, after
running the simulation, you can change the seed value, run the simulation again, and average the
results over multiple simulations.

rng(1,"combRecursive");

Specify the simulation time in seconds.

simulationTime = 0.5;

Initialize the wireless network simulator.

networkSimulator = wirelessNetworkSimulator.init;

Configure the mesh APs such that the AP mode operates in the 2.4 GHz band and the mesh mode
operates in the 6 GHz band.

accessPointCfg = wlanDeviceConfig(Mode="AP",BandAndChannel=[2.4 11]);
meshCfg = wlanDeviceConfig(Mode="mesh",BandAndChannel=[6 1]);

Create three mesh APs from the specified configuration by using the wlanNode object.

meshAPs = wlanNode(Name=["Mesh AP1" "Mesh AP2" "Mesh AP3"], ...
 Position=[0 10 0; 0 5 0; 0 0 0], ...
 DeviceConfig=[accessPointCfg meshCfg]);

Configure the STAs to operate in the 2.4 GHz band.

stationsCfg = wlanDeviceConfig(Mode="STA",BandAndChannel=[2.4 11]);

Create three STAs from the specified configuration by using the wlanNode object.

stations = wlanNode(Name=["STA1" "STA2" "STA3"],Position=[0 0 10; 10 5 0; 10 0 0],DeviceConfig=stationsCfg);

Associate STA1 with mesh AP1, STA2 with mesh AP2, and STA3 with mesh AP3.

associateStations(meshAPs(1),stations(1));
associateStations(meshAPs(2),stations(2));
associateStations(meshAPs(3),stations(3));

Generate an on-off application traffic pattern by using the networkTrafficOnOff object. Add the
application traffic source from mesh AP1 to STA3 by using the addTrafficSource object function.

Alternatively, you can configure full buffer application traffic between the AP and STA by specifying
the FullBufferTraffic input of the associateStations object function.

trafficSource = networkTrafficOnOff(DataRate=1e5);
addTrafficSource(meshAPs(1),trafficSource,DestinationNode=stations(3));

Add mesh paths to propagate application traffic from mesh AP1 (source) to STA3 (destination). The
application traffic flows from mesh AP1 to STA3 through the intermediate relay nodes mesh AP2 and
mesh AP3.

addMeshPath(meshAPs(1),stations(3),meshAPs(3)); % Mesh path from mesh AP1 to STA3 (non-mesh node)
addMeshPath(meshAPs(1),meshAPs(3),meshAPs(2)); % Mesh path from mesh AP1 to mesh AP3 through mesh AP2
addMeshPath(meshAPs(2),meshAPs(3)); % Mesh path from mesh AP2 to mesh AP3

7 System-Level Simulation

7-128

Add nodes to the wireless network simulator.

addNodes(networkSimulator,[meshAPs, stations]);

Run the network simulation for the specified simulation time.

run(networkSimulator,simulationTime);

Custom channel model is not added. Using free space path loss (fspl) model as the default channel model.

At each node, the simulation captures the statistics by using the statistics object function. The
stats variable captures the application statistics, MAC layer statistics, physical layer statistics, and
mesh forwarding statistics for each node. For more information about these statistics, see the “WLAN
System-Level Simulation Statistics” on page 7-114 topic.

stats = statistics([meshAPs, stations])

stats=1×6 struct array with fields:
 Name
 ID
 App
 MAC
 PHY
 Mesh

See Also
Functions
statistics

Objects
wlanDeviceConfig | wlanNode

Related Examples
• “Get Started with WLAN System-Level Simulation in MATLAB” on page 7-31
• “Simulate an 802.11ax Network with Uplink and Downlink Application Traffic” on page 7-111
• “Simulate an 802.11ax Network with Full MAC and Abstracted PHY” on page 7-118
• “Simulate a Multiband 802.11ax Network” on page 7-124
• “Create, Configure, and Simulate an 802.11ax Mesh Network” on page 7-121

 Simulate an 802.11ax Hybrid Mesh Network

7-129

Test and Measurement

8

Modeling and Testing an 802.11ax RF Receiver with 5G
Interference

The example shows how to characterize the impact of RF impairments on the reception of an IEEE®
802.11ax™ waveform coexisting with an adjacent 5G or 802.11ax interferer. The example generates
the baseband waveforms by using WLAN Toolbox™ and 5G Toolbox™ and models the RF receiver by
using RF Blockset™. The example does not require 5G Toolbox if it models an 802.11ax interferer.

Introduction

This example characterizes the impact of an adjacent 5G or 802.11ax interferer on the RF reception
of an 802.11ax waveform. To evaluate the impact of the interference, the example performs these
measurements:

• Error vector magnitude (EVM): vector difference between the ideal (transmitted) signal and the
measured (received) signal

• Adjacent channel rejection (ACR): power difference between the desired signal and an interfering
signal in the adjacent channel

• Packet error rate (PER): number of packets containing errors divided by the total number of
received packets

The impact of the receiver RF impairments such as phase noise and amplifier nonlinearities are also
considered.

The example works on a packet-by-packet basis and uses a Simulink model to perform these steps:

1 Generate the baseband 802.11ax waveform (desired) by using WLAN Toolbox features.
2 Generate the baseband 5G waveform (interferer) by using 5G Toolbox features. You can generate

an 802.11ax interferer by using WLAN Toolbox features instead. Alternatively, you can remove
the interference.

3 Match the sampling rate of the two signals by using the Sample-Rate Match block.
4 To capture spectral regrowth of the combined bandwidth, oversample the waveforms by a factor

of 10 by using an FIR Interpolation block.
5 Measure and display the ACR by calculating the power difference between both waveforms.
6 Aggregate both waveforms by using the Multiband Combiner block.
7 Import the combined waveform into the RF Receiver Subsystem block implemented by using RF

Blockset blocks. The model provides an RF frequency to the combined waveform to carry the
baseband information in RF Blockset.

8 Model the effects of downconverting the combined waveform to an intermediate frequency by
using the RF Receiver Subsystem block. This block models the impairments introduced by an RF
receiver using RF Blockset blocks.

9 Downsample the desired HE waveform by using an FIR Decimation block to compensate for the
upsampling performed by the FIR Interpolation block.

10 Downsample the desired HE waveform by using an FIR Rate Conversion block to compensate for
any upsampling performed by the Sample-Rate Match block.

11 Extract the data symbols and measure the EVM by demodulating the baseband waveform.
12 Calculate the PER by extracting the received bits and comparing them to the transmitted bits.

8 Test and Measurement

8-2

The Simulink model uses WLAN Toolbox, 5G Toolbox, and DSP System Toolbox™ features to process
the baseband waveforms (steps 1-6 and 9-12) and uses RF Blockset blocks to model the RF receiver
(steps 7 and 8). This model supports Normal and Accelerator simulation modes.

Simulink Model Structure

The model contains three main parts:

• Baseband Waveform Generation: generates and combines the baseband 802.11ax and 5G
waveforms

• RF Reception: models the effects of downconverting the combined waveform to an intermediate
frequency

• Baseband Waveform Reception: calculates EVM and PER

modelName = 'HERFReceiverNRInterfererModel';
open_system(modelName);

Baseband Waveform Generation

The WLAN 802.11ax block generates standard-compliant high-efficiency single-user (HE SU)
waveforms, according to IEEE Std 802.11ax-2021. You can generate this block using the WLAN
Waveform Generator app. You can access the waveform configuration parameters in the user data
of the block. This example uses the InitFcn in the Model callbacks to store the structure available
in the user data in a Base Workspace variable, HEInfo. For more information about this block, see
Waveform From Wireless Waveform Generator App.

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-3

Similarly, the 5G NR Test Model block transmits standard-compliant NR-TM waveforms, as defined in
TS 38.141-1. You can generate this block using the 5G Waveform Generator (5G Toolbox) app. The
example also uses the InitFcn in the Model callbacks to store the NR-TM configuration available in
the block user data in a Base Workspace variable, IntInfo. For more information about this block,
see Waveform From Wireless Waveform Generator App (5G Toolbox).

8 Test and Measurement

8-4

To use a different HE SU waveform, open the WLAN Waveform Generator app, select the HE SU
configuration, and export a new block. Similarly, to use a different NR-TM waveform, open the 5G
Waveform Generator app, select the NR-TM configuration, and export a new block. For more
information on how to generate and use such blocks, see “Generate Wireless Waveform in Simulink
Using App-Generated Block” on page 8-62.

Alternatively, you can model an 802.11ax interferer by selecting Choice_HE in the Variant Source
block. The model shifts the HE interferer so that it is not synchronized with the desired HE
waveform.

Control the power of both waveforms by setting the HE Gain and Interferer Gain blocks. To cancel the
transmission of the interferer, set the Gain parameter of the Interferer Gain block to 0.

The Sample-Rate Match block upsamples the waveform with lower sample rate to match the sample
rate of the other waveform. The waveforms must have the same sample rate when combining the
waveforms in the Multiband Combiner block. The Sample-Rate Match block also concatenates both
waveforms horizontally, one column per waveform.

An FIR Interpolation block oversamples and filters the waveforms to show the effect of the nonlinear
impairments on the adjacent channels. To capture at least fifth-order nonlinearities, oversample the
combined bandwidth (both waveforms) by a factor of five. As the current combined bandwidth is 35
MHz (20 and 10 MHz bandwidths and a 20 MHz spacing between them), set an Oversampling
factor of 10 to provide a sample rate of 200 MHz, which is around five times the combined
bandwidth. You can set the Oversampling factor in the Multirate Parameters block, which provides
an interface to configure the parameters of the FIR Interpolation and Decimation blocks.

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-5

The Multiband Combiner block frequency shifts and aggregates the oversampled waveforms. To
measure the ACR, place the center frequency of the adjacent channel 20, 40, 80, or 160 MHz away
from the center frequency of the desired signal, according to IEEE Std 802.11ax-2021. By default, the
example centers the HE waveform at baseband (0 Hz) and sets the spacing between the HE and
interfering waveforms to 20 MHz. You can adjust the center frequencies by specifying the Frequency
offsets (Hz) parameter in the Multiband Combiner block. The ACR measurement is displayed in the
ACR (dB) block.

Specify Simulation Time

Set the Stop Time value in the Simulink model to the time required to transmit and obtain the EVM
results and constellation diagram of at least one packet. Considering the waveform configuration
selected in the WLAN 802.11ax block, the packet transmission time in this example is 85.8
microseconds. As the filters in the FIR Interpolation, Decimation and Rate Conversion blocks
introduce a delay, you can use the IdleTime parameter in the Mask Editor of the WLAN 802.11ax
block to compensate for the delay.

RF Reception

The RF Receiver Subsystem block is based on a superheterodyne receiver architecture. This
architecture models the effects of downconverting the combined waveform to an intermediate
frequency by characterizing these RF components:

• RF and IF bandpass filters
• Low noise amplifiers

8 Test and Measurement

8-6

• Demodulator consisting of mixers, phase shifter, and local oscillator

set_param(modelName,'Open','off');
set_param([modelName '/RF Receiver'],'Open','on');

Use an Input Buffer block to send one sample at a time to the RF Receiver Subsystem block.

The Inport block inside the RF Receiver Subsystem block converts the combined Simulink complex
baseband waveform into the RF Blockset Circuit Envelope simulation environment. You can vary the
center frequency of the combined RF signal by modifying the Carrier frequency parameter of the
Inport block. By default, the Carrier frequency parameter of the Inport block corresponds to the
center frequency of the desired HE waveform and the carrier frequency of the NR waveform is
located 20 MHz from the HE carrier. The Outport block converts the RF Blockset signal back into
Simulink complex baseband.

You can configure the RF Receiver components by using the RF Receiver Subsystem block mask.

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-7

The RF Receiver Subsystem block models typical impairments, including:

• Phase noise as an effect directly related to the thermal noise within the active devices of the
oscillator

• Amplifier nonlinearities due to DC power limitation when the amplifiers work in the saturation
region

• Impedance mismatch resulting in signal reflection or an inefficient power transfer

As the current RF Receiver Subsystem block configuration sends one sample at a time, the Output
Buffer block (after the RF Receiver Subsystem block) collects all samples within the baseband HE
waveform before sending the samples to the HE Demodulation and EVM Calculation block. At the
output of the RF Receiver Subsystem block, the FIR Decimation and FIR Rate Conversion blocks
downsample the waveform back to its original sampling rate. Additionally, the ADC Subsystem block
digitizes the signal. You can modify the parameters of the blocks inside the ADC Subsystem block
using its mask.

8 Test and Measurement

8-8

Baseband Waveform Reception

The HE Demodulation and EVM Calculation block recovers and plots the HE-Data symbols in the
Constellation Diagram block by performing frequency and packet offset corrections, channel
estimation, pilot phase tracking, OFDM demodulation, and equalization. This block performs these
EVM measurements:

• EVM per subcarrier (dB): EVM averaged over the allocated HE-Data symbols within a subcarrier
• EVM per OFDM symbol (dB)
• Overall EVM (dB and %): EVM averaged over all transmitted HE-Data symbols

This block also decodes each packet to recover the transmitted bits. The example compares the
recovered bits to those transmitted for each packet to determine the packet error rate for the
simulation duration by using the PER Calculation block.

The ACR measurement is displayed in the ACR (dB) block. You can also measure the ACR by
calculating the power difference between the Channel Power levels of each waveform in the
Spectrum Analyzer Input block. To check the Channel Power levels of each waveform, set this
configuration in the Spectrum Analyzer Input block:

• The Span (Hz): must be the bandwidth of the waveform to measure. By default, the example sets
this value to 20 MHz, which is the bandwidth of the desired HE waveform.

• The CF (Hz): must be 0 for the desired HE waveform or the spacing between both waveforms
(defined in the Multiband Combiner block) for the interferer. By default, the example sets this
value to 0 Hz to measure the channel power of the desired waveform.

To measure ACR according to IEEE Std 802.11ax-2021, set the desired waveform power 3 dB above
the rate-dependent sensitivity specified in Table 27-51 (-71 dBm for the default configuration) and
adjust the power level of the interferer waveform to achieve a 10% PER for a PSDU length of 4096
octets.

Model Performance

To characterize the impact of the NR interference on the HE reception you can compare the EVM for
two different cases: 1) without interference, for example, transmit only the HE waveform; and 2) with

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-9

interference, for example, transmit both HE and NR waveforms. You can also measure the ACR in the
second case.

• Without NR interference (NR gain = 0). To eliminate the NR interference, set the Gain parameter
of the Interferer Gain block to 0. To calculate the EVM and plot the constellation diagram, run the
simulation to capture one packet (Stop Time equal to 85.5 microseconds for the default
configuration).

set_param([modelName '/Interferer Gain'],'Gain','0');
sim(modelName);

8 Test and Measurement

8-10

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-11

8 Test and Measurement

8-12

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-13

When you disable the interference, the overall EVM is around -20 dB.

• With NR interference (NR gain = -37.72 dB). To activate the NR interference, set the Gain
parameter of the Interferer Gain block to any value greater than 0. For example, in order to
measure the ACR when the PER is approximately 10% for a PSDU length of 4096 octets, IEEE Std
802.11ax-2021, choose a gain value of around -30 dB and increase the APEP length. If you want to
measure the PER for several packet transmissions, for example 100 packets, multiply the current
Stop Time value by 100. By default, the example transmits one packet and sets the APEP length
to 50 bytes.

set_param([modelName '/Interferer Gain'],'Gain','db2mag(-30)');
sim(modelName);

8 Test and Measurement

8-14

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-15

8 Test and Measurement

8-16

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-17

8 Test and Measurement

8-18

Compared to the case without interference, the constellation diagram is more distorted and the
overall EVM is around -17 dB.

The ACR is around 38 dB. You can also measure the ACR when the interferer is an HE waveform. In
this case, to measure the ACR when the PER is approximately 10% for a PSDU length of 4096 octets,
IEEE Std 802.11ax-2021, set the Gain value of the Interferer block to around -72.4 dB.

Summary and Further Exploration

This example demonstrates how to model and test the reception of an HE waveform coexisting with
an NR waveform or another HE waveform. The RF receiver consists of bandpass filters, amplifiers,
and a demodulator. To evaluate the impact of the NR interference, the example modifies the gain of
the NR waveform and performs EVM, PER, and ACR measurements. You can explore the impact of
altering the RF impairments. For example:

• Increase the phase noise by using Phase noise offset (Hz) and Phase noise level (dBc/Hz)
parameters on the Demodulator tab of the RF Receiver Subsystem block.

• Decrease the LO to RF isolation by using the LO to RF isolation (dB) parameter on the
Demodulator tab of the RF Receiver Subsystem block.

This example configures the RF Receiver Subsystem block to work with the default values of the
WLAN 802.11ax and 5G NR Test Model blocks and with the HE and NR carriers centered at 5950
MHz and 5970 MHz, respectively. These carriers are within the IEEE 802.11 HE frequency bands
(between 1 GHz and 7.125 GHz) and the NR operating band n96, according to IEEE Std
802.11ax-2021 and TS 38.101-1, respectively. If you change the carrier frequencies or the waveform

 Modeling and Testing an 802.11ax RF Receiver with 5G Interference

8-19

configurations, check if you need to update the parameters of the RF Receiver Subsystem block as
these parameters have been selected to work for the default configuration of the example. For
instance, a change in the HE carrier frequency requires revising the Passband frequencies and
Stopband frequencies parameters of the RF Bandpass Filter block inside the RF Receiver. If you
increase the waveform bandwidth, check if you need to update the Impulse response duration and
Phase noise frequency offset (Hz) parameters of the Demodulator (RF Blockset) block. The phase
noise offset determines the lower limit of the impulse response duration. If the phase noise frequency
offset resolution is high for a given impulse response duration, a warning message appears,
specifying the minimum duration suitable for the required resolution.

You can use this example as the basis for testing the coexistence between HE and NR or HE
waveforms for different RF configurations. You can replace the RF Receiver Subsystem block with
another RF subsystem and then configure the model accordingly.

You can also use this example as the basis for performing the coexistence tests defined in IEEE/ANSI
C63.27-2017, the American National Standard for Evaluation of Wireless Coexistence. Examples of
those tests are:

• Wi-Fi devices operating in the 2.4 GHz ISM band (2.4 to 2.4835 GHz), where the unintended
signals (or interferers) are 802.11n or LTE.

• Wi-Fi devices operating in the 5 GHz UNII & ISM bands (5.15 to 5.85 GHz), where the unintended
signal (or interferer) is 802.11n.

To transmit the 802.11n or LTE interferers, open the WLAN Waveform Generator app or the LTE
Waveform Generator (LTE Toolbox) app, respectively, and export a new block. To change the
frequency band, modify the HE carrier frequency (MHz) parameter in the RF Receiver Subsystem
block mask. You can also place the adjacent unintended waveform at a different frequency by
updating the Frequency offsets (Hz) parameter in the Multiband Combiner block.

Bibliography

1 3GPP TS 38.141-1. "NR; Base Station (BS) conformance testing Part 1: Conducted conformance
testing." 3rd Generation Partnership Project; Technical Specification Group Radio Access
Network.

2 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

3 3GPP TS 38.101-1. "NR; User Equipment (UE) radio transmission and reception." 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network.

4 IEEE/ANSI C63.27-2017 - American National Standard for Evaluation of Wireless Coexistence

8 Test and Measurement

8-20

Modeling and Testing an 802.11ax RF Transmitter

This example shows how to characterize the impact of RF impairments in an 802.11ax transmitter.
The example generates a baseband IEEE® 802.11ax™ waveform by using WLAN Toolbox™ and
models the RF transmitter by using RF Blockset™.

Introduction

This example characterizes the impact of RF impairments such as in-phase and quadrature (IQ)
imbalance, phase noise, and power amplifier (PA) nonlinearities on the transmission of an 802.11ax
waveform. To evaluate the impact of these impairments, the example performs these measurements:

• Error vector magnitude (EVM): vector difference at a given time between the ideal (transmitted)
signal and the measured (received) signal

• Spectral mask: test that ensures a transmission in one channel does not cause substantial
interference in adjacent channels

• Occupied bandwidth: bandwidth that contains 99% of the total integrated power of the signal,
centered on the assigned channel frequency

• Channel power: filtered mean power centered on the assigned channel frequency
• Complementary cumulative distribution function (CCDF): probability that the signal's

instantaneous power is at a specified level above its average power
• Peak-to-average power ratio (PAPR): relation between the peak power of the signal and its average

power

The example works on a packet-by-packet basis and uses a Simulink model to perform these steps:

1 Generate the baseband 802.11ax waveform by using WLAN Toolbox features.
2 Oversample and filter the waveform by using an FIR Interpolation block.
3 Import the baseband waveform into the RF Transmitter Subsystem block implemented by using

RF Blockset blocks. The model uses an RF intermediate frequency to carry the baseband
information in RF Blockset.

4 Model the effects of upconverting the waveform to the carrier frequency by using the RF
Transmitter Subsystem block. This block models the impairments introduced by an RF
transmitter using RF Blockset blocks.

5 Calculate the occupied bandwidth and channel power and depict the spectral mask by using the
Spectrum Analyzer block.

6 Compute the CCDF and PAPR by using the CCDF and PAPR block.
7 Downsample and filter the waveform by using an FIR Decimation block.
8 Extract the data symbols and measure the EVM by demodulating the baseband waveform.

The Simulink model uses WLAN Toolbox and DSP System Toolbox™ features to process the baseband
signal (steps 1, 2, and 5-8) and uses RF Blockset blocks to model the RF transmitter (steps 3 and 4).
This model supports Normal and Accelerator simulation modes.

Simulink Model Structure

The model contains three main parts:

 Modeling and Testing an 802.11ax RF Transmitter

8-21

• Baseband Waveform Generation: generates the baseband 802.11ax waveforms
• RF Transmission: models the effects of upconverting the waveform to the carrier frequency
• Baseband Waveform Reception: performs the RF measurements and calculates EVM by

demodulating the baseband waveform

modelName = 'HERFTransmitterModel';
open_system(modelName);

Baseband Waveform Generation

The WLAN 802.11ax block generates standard-compliant high-efficiency single-user (HE SU)
waveforms, according to IEEE Std 802.11ax™-2021. You can generate this block using the WLAN
Waveform Generator app. You can access the waveform configuration parameters in the user data
of the block. This example uses the InitFcn in the Model callbacks to store the structure available
in the user data in a Base Workspace variable, HEInfo. For more information about this block, see
Waveform From Wireless Waveform Generator App.

8 Test and Measurement

8-22

To display the effect of the high-power amplifier (HPA) on the out-of-band spectral emissions, the FIR
Interpolation block oversamples and filters the waveform. At the output of the RF Transmitter
Subsystem block, the FIR Decimation block downsamples the waveform back to its original sampling
rate. The Multirate Parameters block provides an interface to configure the parameters of the FIR
Interpolation and Decimation blocks.

 Modeling and Testing an 802.11ax RF Transmitter

8-23

Specifying Simulation Time

Set the Stop Time value in the Simulink model to the time required to transmit and obtain the EVM
results and constellation diagram of, at least, one packet. Considering the waveform configuration
selected in the WLAN 802.11ax block, the packet transmission time in this example is 304.4
microseconds. As the filters in the FIR Interpolation and Decimation blocks introduce a delay, you can
use the IdleTime parameter in the Mask Editor of the WLAN 802.11ax block to compensate for the
delay.

RF Transmission

The RF Transmitter Subsystem block is based on a superheterodyne transmitter architecture. This
architecture models the effects of upconverting the waveform to the carrier frequency by
characterizing these RF components:

• IQ modulator consisting of mixers, a phase shifter, and a local oscillator
• Bandpass filter
• Power amplifier

In addition to these components, this RF Transmitter Subsystem block also includes a variable gain
amplifier (VGA) to control the input back-off (IBO) level of the HPA.

set_param(modelName,'Open','off');
RFTransmitterBlock = [modelName '/RF Transmitter'];
set_param(RFTransmitterBlock,'Open','on');

8 Test and Measurement

8-24

Use an Input Buffer block to send one sample at a time to the RF Transmitter Subsystem block.

The Inport block inside the RF Transmitter Subsystem block converts the Simulink complex baseband
waveform into the RF Blockset Circuit Envelope simulation environment. The Carrier frequencies
parameter of the Inport block specifies the center frequency of the carrier in the RF Blockset domain.
The Outport block converts the RF Blockset signal back into Simulink complex baseband.

You can configure the RF Transmitter components by using the RF Transmitter Subsystem block
mask.

 Modeling and Testing an 802.11ax RF Transmitter

8-25

The RF Transmitter Subsystem block models typical impairments, including:

• I/Q imbalance as a result of gain or phase mismatches between the parallel sections of the
transmitter chain dealing with the IQ signal paths

• Phase noise as an effect directly related to the thermal noise within the active devices of the
oscillator

• PA nonlinearities due to DC power limitation when the amplifier works in the saturation region

Adapt the power level of the baseband waveform to the RF configuration by adding a Gain Control
block after the Input Buffer block.

As the current RF Transmitter Subsystem block configuration sends one sample at a time, the Output
Buffer block (after the RF Transmitter Subsystem block) collects all samples within an HE SU packet
before sending the samples onto the Demodulation and EVM calculation block.

Baseband Waveform Reception

The Demodulation and EVM calculation block recovers and plots the HE Data symbols in the
Constellation Diagram block by performing frequency and packet offset corrections, channel

8 Test and Measurement

8-26

estimation, pilot phase tracking, OFDM demodulation, and equalization. This block also performs
these EVM measurements:

• EVM per subcarrier (dB): EVM averaged over the allocated HE Data symbols within a subcarrier
• EVM per OFDM symbol (dB)
• Overall EVM (dB and %): EVM averaged over all transmitted HE Data symbols

The Spectrum Analyzer block depicts the spectral mask according to IEEE Std 802.11ax™-2021,
Section 27.3.19.1. The CCDF and PAPR block, connected at the input of the HPA block, depicts the
CCDF and PAPR measurements. The Power Meter block measures the RF waveform channel power,
which is displayed in the Output Power (dBm) block.

Effect of Power Amplifier Nonlinearities

To characterize the impact of HPA nonlinearities in the EVM evaluation, you can measure the
amplitude-to-amplitude modulation (AM/AM) of the HPA. The AM/AM refers to the output power
levels in terms of the input power levels. The helper function hePlotHPACurve displays the AM/AM
characteristic of the HPA selected for this model.

hePlotHPACurve();
figHPA = gcf;

P1dB is the power at 1 dB compression point and is normally used as a reference when selecting the
IBO level of the HPA. You can see the HPA impact on the RF Transmitter Subsystem block by
analyzing the EVM results for different operating points of the HPA. For example, compare the case
when IBO = 11 dB, corresponding to HPA operating in the linear region, with the case when IBO = 3

 Modeling and Testing an 802.11ax RF Transmitter

8-27

dB, corresponding to HPA operating in saturation. The gain of the VGA controls the IBO level. To keep
a VGA linear behavior using the default parameters, select gain values lower than 15 dB.

• Linear HPA (IBO = 11 dB). To operate at an IBO level of 11 dB, set the Available power gain
parameter of the VGA block to 5 dB. To calculate the EVM and plot the constellation diagram, run
the simulation to capture one packet (Stop Time equal to 304.4 us for the default configuration).

set_param(RFTransmitterBlock,'vgaGain','5');
sim(modelName);

8 Test and Measurement

8-28

 Modeling and Testing an 802.11ax RF Transmitter

8-29

8 Test and Measurement

8-30

 Modeling and Testing an 802.11ax RF Transmitter

8-31

According to IEEE Std 802.11ax™-2021, Table 27-49, the allowed relative constellation error (EVM)
in an HE SU PPDU when the dual carrier modulation, or DCM parameter in the WLAN 802.11ax
block Mask Editor, is equal to false and the Modulation/coding, or MCS parameter in the WLAN
802.11ax block Mask Editor, is equal to 3 (16-QAM, 1/2) is -16 dB. As the overall EVM, around -41 dB,
is lower than -16 dB, this architecture falls within the requirements of IEEE Std 802.11ax™-2021.

• Nonlinear HPA (IBO = 3 dB). To operate at an IBO level of 3 dB, set the Available power gain
parameter of the VGA block to 13 dB.

set_param(RFTransmitterBlock,'vgaGain','13');
sim(modelName);

% Restore to default parameters
set_param(RFTransmitterBlock,'vgaGain','5');

8 Test and Measurement

8-32

 Modeling and Testing an 802.11ax RF Transmitter

8-33

8 Test and Measurement

8-34

 Modeling and Testing an 802.11ax RF Transmitter

8-35

8 Test and Measurement

8-36

Compared to the previous case, the constellation diagram is more distorted. In terms of
measurements, the overall EVM, around -28 dB, is still lower than -16 dB, so it also falls within the
requirements of IEEE Std 802.11ax™-2021.

Summary and Further Exploration

This example demonstrates how to model and test the transmission of an 802.11ax waveform. The RF
Transmitter Subsystem block consists of a bandpass filter, amplifiers and an IQ modulator. The
example highlights the effect of HPA nonlinearities on the performance of the RF Transmitter
Subsystem block. You can explore the impact of altering other impairments as well. For example:

• Increase I/Q imbalance by using the I/Q gain mismatch (dB) and I/Q phase mismatch (Deg)
parameters on the IQ Modulator tab of the RF Transmitter Subsystem block.

• Increase the phase noise by using Phase noise offset (Hz) and Phase noise level (dBc/Hz)
parameters on the IQ Modulator tab of the RF Transmitter Subsystem block.

The RF Transmitter Subsystem block is configured to work with the current HE waveform parameters
selected in the WLAN 802.11ax block and with the RF carrier centered at 5950 MHz. This carrier is
within the IEEE 802.11 HE STA frequency bands (between 1 GHz and 7.125 GHz, according to IEEE
Std 802.11ax™-2021. If you modify the Center frequency (MHz) parameter of the RF Transmitter
Subsystem block or the waveform configuration of the WLAN 802.11ax block, check if you need to
update the parameters of the RF Transmitter components and the FIR filters as these parameters are
set to work with the current example configuration. For instance, a change in the carrier frequency
requires revising the Passband frequencies and Stopband frequencies parameters of the
Bandpass Filter block inside the RF Transmitter. If you increase the waveform bandwidth, check if

 Modeling and Testing an 802.11ax RF Transmitter

8-37

you need to update the Impulse response duration and Phase noise frequency offset (Hz)
parameters of the IQ Modulator (RF Blockset) block. The phase noise offset determines the lower
limit of the impulse response duration. If the phase noise frequency offset resolution is high for a
given impulse response duration, a warning message appears, specifying the minimum duration
suitable for the required resolution.

You can use this example as the basis for testing HE waveforms for different RF configurations. You
can replace the RF Transmitter Subsystem block by another RF subsystem and then configure the
model accordingly.

To use a different HE SU waveform, open the WLAN Waveform Generator app, select the HE SU
configuration, and export a new block. For more information on how to generate and use this block,
see “Generate Wireless Waveform in Simulink Using App-Generated Block” on page 8-62.

References

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

8 Test and Measurement

8-38

802.11ac Receiver Minimum Input Sensitivity Test

This example shows how to measure the receiver minimum input sensitivity as specified in Section
21.3.18.1 of the IEEE Std 802.11™-2020 standard [1].

Introduction

The receiver minimum sensitivity test ensures a device under test (DUT) receives data with a defined
maximum packet error rate (PER) of 10% at a defined minimum signal power. The minimum signal
power depends on the channel bandwidth and modulation and coding scheme (MCS) as specified in
Table 21-25 of IEEE Std 802.11™-2020 [1]:

When the test is performed with hardware, each input antenna port on the DUT is connected through
a cable to a single output antenna port of a transmitter. To perform the test, specify these parameters
for the test waveform:

• Number of spatial streams - equal to the number of transmit antennas
• PSDU length, in bytes - 4096
• Space-time block coding (STBC) - disabled
• Guard interval, in nanoseconds - 800
• Channel coding - binary convolutional coding (BCC)

This example shows how to simulate the test by using WLAN Toolbox™. VHT packets stimulate a
receiver at a range of input levels below the minimum sensitivity level. The example then measures
the packet error rate for each sensitivity level.

The example simulates the test by performing these steps over a range of sensitivity levels:

• Generate and scale packets to the desired signal level
• Add white Gaussian noise is to create a noise floor at the receiver
• Demodulate the noisy packets to recover PSDUs.
• Compare recovered PSDUs to those transmitted to determine the number of packet errors and

hence the packet error rate.

Automatic gain control (AGC), packet detection, timing synchronization, carrier frequency offset
correction, noise estimation and phase tracking are performed by the example receiver. This diagram
demonstrates processing for each packet:

 802.11ac Receiver Minimum Input Sensitivity Test

8-39

Test Parameters

Configure a transmission for the test by using a VHT configuration object. This example measures the
minimum sensitivity for a 160 MHz transmission with 64-QAM rate 5/6 modulation and coding. The
simulated DUT has 2 receive antennas. Test different configurations by changing these parameters.

cfgVHT = wlanVHTConfig; % Create VHT transmission configuration
cfgVHT.ChannelBandwidth = 'CBW160'; % Bandwidth
cfgVHT.MCS = 7; % 64-QAM, rate 5/6
NumReceiveAntennas = 2; % Number of receive antennas

The test requires these fixed transmission parameters.

cfgVHT.APEPLength = 4096; % Bytes
cfgVHT.STBC = false;
cfgVHT.NumTransmitAntennas = NumReceiveAntennas;
cfgVHT.NumSpaceTimeStreams = NumReceiveAntennas;
cfgVHT.SpatialMapping = 'Direct';
cfgVHT.GuardInterval = 'Long';

Simulation Parameters

A receiver processes VHT packets at a range of input levels below the minimum input sensitivity
level. Specify the range of offsets to test in the vector testInputLevelOffsets.

testInputLevelOffsets = [-10 -9 -8 -7]; % dB

Control the number of packets tested at each sensitivity by specifying these parameters:

1 maxNumErrors is the maximum number of packet errors simulated at each input level. When the
number of packet errors reaches this limit, the simulation at this sensitivity level is complete.

2 maxNumPackets is the maximum number of packets simulated at each input level and limits the
length of the simulation if the packet error limit is not reached.

The numbers chosen in this example lead to a very short simulation. Increase maxNumErrors and
maxNumPackets for meaningful results.

maxNumErrors = 20;
maxNumPackets = 200;

8 Test and Measurement

8-40

Signal Power Setup

The minimum sensitivity test specifies a maximum PER for a measured input level per receive
antenna. In this simulation the receiver processes a test signal with a specified input level in dBm.
Generate the test signal using the wlanWaveformGenerator function. The
wlanWaveformGenerator function normalizes the waveform such that the power for all antennas
sums to 0 dBm. Therefore, scale the output of the waveform generator to create the desired input
level.

% Receiver minimum input level sensitivity for 20 MHz, Table 21-25. The
% sensitivity increases by 3dB for double the bandwidth.
rxMinSensitivityTable = [-82 -79 -77 -74 -70 -66 -65 -64 -59 -57]; % dBm

% Get minimum input sensitivity given MCS and bandwidth
fs = wlanSampleRate(cfgVHT); % Baseband sampling rate (Hz)
B = floor(10*log10((fs/20e6))); % Scalar for bandwidth
rxMinSensitivity = rxMinSensitivityTable(cfgVHT.MCS+1)+B; % dBm
disp(['Minimum sensitivity for MCS' num2str(cfgVHT.MCS) ', ' ...
 num2str(fs/1e6) ' MHz: ' num2str(rxMinSensitivity,'%2.1f') ' dBm'])

Minimum sensitivity for MCS7, 160 MHz: -55.0 dBm

Define the range of input levels below the minimum level to test using testInputLevels.

testInputLevels = rxMinSensitivity+testInputLevelOffsets; % dBm

Calculate a voltage scalar, A, to scale the generated waveform for each test level. The power per
receive antenna port is measured during the simulation to confirm the input signal level is correct.

A = 10.^((testInputLevels-30)/20); % Voltage gain (attenuation)
A = A*sqrt(cfgVHT.NumTransmitAntennas); % Account for generator scaling

Noise Configuration

Add thermal noise at the receiver. The height of the noise floor determines the SNR at the receiver, as
the input signal level is fixed for this test. The noise figure of the receiver determines the level of
noise floor.

NF = 6; % Noise figure (dB)
T = 290; % Ambient temperature (K)
BW = fs; % Bandwidth (Hz)
k = 1.3806e-23; % Boltzmann constant (J/K)
noiseFloor = 10*log10(k*T*BW)+NF; % dB
disp(['Receiver noise floor: ' num2str(noiseFloor+30,'%2.1f') ' dBm'])

Receiver noise floor: -85.9 dBm

Add noise to the waveform using an AWGN channel, comm.AWGNChannel.

awgnChannel = comm.AWGNChannel('NoiseMethod','Variance', ...
 'Variance',10^(noiseFloor/10));

Input Level Sensitivity Simulation

Calculate the packet error rate for each input level by simulating multiple packets.

For each packet perform the following processing steps:

 802.11ac Receiver Minimum Input Sensitivity Test

8-41

1 Create and encode a PSDU to create a single packet waveform.
2 Create the desired input level in dBm by scaling the waveform.
3 Measure the power of the received waveform.
4 Add AWGN to the received waveform.
5 Boost the signal prior to processing by passing through an automatic gain control.
6 Detect the packet.
7 Estimate and correct coarse carrier frequency offset.
8 Establish fine timing synchronization.
9 Estimate and correct fine carrier frequency offset.
10 Extract and OFDM demodulate the VHT-LTF and perform channel estimation.
11 Extract the VHT Data field and recover the PSDU.

ind = wlanFieldIndices(cfgVHT); % For accessing fields within the packet
chanBW = cfgVHT.ChannelBandwidth;
rng(0); % Set random state for repeatability

agc = comm.AGC; % Automatic gain control

S = numel(testInputLevels);
packetErrorRate = zeros(S,1);
rxAntennaPower = zeros(S,1);
for i=1:S
 disp(['Simulating ' num2str(testInputLevels(i),'%2.1f') ...
 ' dBm input level...']);

 % Loop to simulate multiple packets
 numPacketErrors = 0;
 measuredPower = zeros(maxNumPackets,1); % Average power per antenna
 numPkt = 1; % Index of packet transmitted
 while numPacketErrors<=maxNumErrors && numPkt<=maxNumPackets
 % Generate a packet waveform
 txPSDU = randi([0 1],cfgVHT.PSDULength*8,1); % PSDULength in bytes
 tx = wlanWaveformGenerator(txPSDU,cfgVHT);

 % Scale input signal to desired level
 rx = tx.*A(i);

 % Measure the average power at the antenna connector in Watts
 measuredPower(numPkt) = mean(mean(rx.*conj(rx)));

 % Add noise floor at receiver
 rx = awgnChannel(rx);

 % Pass each channel through AGC
 for ic = 1:size(rx,2)
 rx(:,ic) = agc(rx(:,ic));
 reset(agc);
 end

 % Packet detect and determine coarse packet offset
 coarsePktOffset = wlanPacketDetect(rx,chanBW);
 if isempty(coarsePktOffset) % If empty no L-STF detected; packet error
 numPacketErrors = numPacketErrors+1;

8 Test and Measurement

8-42

 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-STF and perform coarse frequency offset correction
 lstf = rx(coarsePktOffset+(ind.LSTF(1):ind.LSTF(2)),:);
 coarseFreqOff = wlanCoarseCFOEstimate(lstf,chanBW);
 rx = frequencyOffset(rx,fs,-coarseFreqOff);

 % Extract the non-HT fields and determine fine packet offset
 nonhtfields = rx(coarsePktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 finePktOffset = wlanSymbolTimingEstimate(nonhtfields,chanBW);

 % Determine final packet offset
 pktOffset = coarsePktOffset+finePktOffset;
 % if packet detected out of a reasonable range (>50 samples);
 % packet error
 if pktOffset>50
 numPacketErrors = numPacketErrors+1;
 numPkt = numPkt+1;
 continue; % Go to next loop iteration
 end

 % Extract L-LTF and perform fine frequency offset correction
 lltf = rx(pktOffset+(ind.LLTF(1):ind.LLTF(2)),:);
 fineFreqOff = wlanFineCFOEstimate(lltf,chanBW);
 rx = frequencyOffset(rx,fs,-fineFreqOff);

 % Extract VHT-LTF samples from the waveform, demodulate and perform
 % channel estimation
 vhtltf = rx(pktOffset+(ind.VHTLTF(1):ind.VHTLTF(2)),:);
 vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,cfgVHT);
 [chanEst,chanEstSSPilots] = wlanVHTLTFChannelEstimate(vhtltfDemod,cfgVHT);

 % Extract VHT Data samples from the waveform
 vhtdata = rx(pktOffset+(ind.VHTData(1):ind.VHTData(2)),:);

 % Estimate the noise power in VHT data field
 nEstVHT = vhtNoiseEstimate(vhtdata,chanEstSSPilots,cfgVHT);

 % Recover the transmitted PSDU in VHT Data
 rxPSDU = wlanVHTDataRecover(vhtdata,chanEst,nEstVHT,cfgVHT, ...
 'LDPCDecodingMethod','norm-min-sum');

 % Determine if any bits are in error, i.e. a packet error
 packetError = any(biterr(txPSDU,rxPSDU));
 numPacketErrors = numPacketErrors+packetError;
 numPkt = numPkt+1;
 end

 % Calculate packet error rate (PER) at input level point
 packetErrorRate(i) = numPacketErrors/(numPkt-1);
 disp([' Completed after ' ...
 num2str(numPkt-1) ' packets, PER: ' ...
 num2str(packetErrorRate(i))]);

 % Calculate average input power per antenna
 rxAntennaPower(i) = 10*log10(mean(measuredPower(1:(numPkt-1))))+30;

 802.11ac Receiver Minimum Input Sensitivity Test

8-43

 disp([' Measured antenna connector power: ' ...
 num2str(rxAntennaPower(i),'%2.1f') ' dBm']);
end

Simulating -65.0 dBm input level...
 Completed after 21 packets, PER: 1
 Measured antenna connector power: -65.0 dBm
Simulating -64.0 dBm input level...
 Completed after 26 packets, PER: 0.80769
 Measured antenna connector power: -64.0 dBm
Simulating -63.0 dBm input level...
 Completed after 130 packets, PER: 0.16154
 Measured antenna connector power: -63.0 dBm
Simulating -62.0 dBm input level...
 Completed after 200 packets, PER: 0.02
 Measured antenna connector power: -62.0 dBm

Analysis and Further Exploration

Plot the PER for tested input signal levels with the maximum PER at minimum sensitivity.

figure
semilogy(rxAntennaPower,packetErrorRate,'o-')
hold on
semilogy(rxMinSensitivity,0.1,'rx')
currentxlim = xlim(gca);
xlim([currentxlim(1) currentxlim(2)+1])
grid on
xlabel('Measured power per antenna connector (dBm)');
ylabel('PER');
legend('Simulated PER performance','Maximum PER at minimum sensitivity');
title(sprintf(['Minimum Input Sensitivity Test: MCS%d, %d MHz, ' ...
 '%d Antennas'],cfgVHT.MCS,fs/1e6,cfgVHT.NumTransmitAntennas))

8 Test and Measurement

8-44

The plot reveals the simulated 10% PER is just under 8 dB lower than the minimum sensitivity
specified by the test. This difference is due to the implementation margin allowed by the test. The
implementation margin allows for algorithmic degradations due to impairments and the receiver
noise figure when compared to ideal AWGN performance [2]. In this example only AWGN is added as
an impairment. Therefore, only the algorithmic performance of front-end synchronization, channel
estimation and phase tracking in the presence of AWGN use the implementation margin. If more
impairments are included in the simulation the PER waterfall in the plot will move right towards the
minimum sensitivity and the margin will decrease.

The number of packets tested at each SNR point is controlled by two parameters; maxNumErrors
and maxNumPackets. For meaningful results, you should use larger numbers than those used in this
example.

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 Perahia, Eldad, and Robert Stacey. Next Generation Wireless LANS: 802.11n and 802.11ac.
Cambridge University Press, 2013.

 802.11ac Receiver Minimum Input Sensitivity Test

8-45

802.11ac Transmitter Measurements

This example shows how to perform these transmitter measurements on an IEEE® 802.11ac™
waveform:

• Modulation accuracy
• Spectrum emission mask
• Spectrum flatness
• In-phase and quadrature (IQ) gain and phase imbalance

Introduction

The transmitter modulation accuracy, required spectrum mask, and required spectral flatness for a
given configuration is specified in Section 21.3.17 of [1 on page 8-61]. This example shows how to
perform these measurements on a waveform. This example also models, measures, and corrects the
IQ gain and phase imbalance. Generate the waveform with WLAN Toolbox™ or use a captured
waveform with a spectrum analyzer.

The example generates 20 upsampled VHT packets with an 80 MHz channel bandwidth and a 10
microsecond gap between packets. Each packet contains random data and uses 256-QAM
modulation. Add the IQ gain and phase imbalance to the filtered waveform. Use a high-power
amplifier (HPA) model to introduce inband distortion and spectral regrowth. Perform the spectral
emission mask measurement on the upsampled waveform after the high-power amplifier modeling.
Downsample and correct the waveform with the estimated IQ gain and phase imbalance. Measure the
error vector magnitude (EVM) of the VHT Data field to determine the modulation accuracy.
Additionally, measure the spectral flatness. This diagram shows the workflow contained in the
example.

802.11ac VHT Packet Configuration

This example generates an IEEE 802.11ac waveform consisting of multiple VHT format packets. Use
the VHT format configuration object, wlanVHTConfig, to configure transmission properties of a VHT
packet. This example configures the VHT waveform for a 80 MHz bandwidth. Because this example
does not use space-time block coding, it can measure the modulation accuracy per spatial stream.

8 Test and Measurement

8-46

cfgVHT = wlanVHTConfig; % Create packet configuration
cfgVHT.ChannelBandwidth = 'CBW80'; % 80 MHz
cfgVHT.NumTransmitAntennas = 1; % One transmit antenna
cfgVHT.NumSpaceTimeStreams = 1; % One space-time stream
cfgVHT.STBC = false; % No STBC so one spatial stream
cfgVHT.MCS = 8; % Modulation: 256-QAM
cfgVHT.APEPLength = 3000; % A-MPDU length pre-EOF padding in bytes

Waveform Generation

Generate the VHT waveform for the specified bits and configuration by using the
wlanWaveformGenerator function, specifying the desired oversampling factor, number of packets,
and idle time between each packet.

osf = 3; % 3x oversampling factor
numPackets = 20; % Generate 20 packets
idleTime = 10e-6; % 10 microseconds idle time between packets

Create random bits for all packets, data, and pass as an argument to wlanWaveformGenerator
along with the VHT packet configuration object cfgVHT. This configures the waveform generator to
synthesize an 802.11ac VHT waveform. Additionally, configure the waveform generator by using
name-value pairs to generate multiple oversampled packets with a specified idle time between each
packet.

% Create random data; PSDULength is in bytes
savedState = rng(0); % Set random state
data = randi([0 1],cfgVHT.PSDULength*8*numPackets,1);

% Generate a multi-packet waveform
txWaveform = wlanWaveformGenerator(data,cfgVHT, ...
 'OversamplingFactor',osf,'NumPackets',numPackets,'IdleTime',idleTime);

fs = wlanSampleRate(cfgVHT); % Baseband sampling rate of the waveform

Add Impariments

IQ Imbalance Modeling

IQ imbalance arises when a front-end component does not respect the power balance or the
orthogonality between the I and Q branches. This example adds IQ gain and phase imbalance to the
transmitted waveform based on the flag modelIQImbalance. At the receiver, estimate the IQ gain
and phase imbalance and correct the waveform as per the compensation scheme specified in [5 on
page 8-61].

modelIQImbalance = true; % Set to true to add IQ gain and phase imbalance

if modelIQImbalance
 iqGaindB = 1; % IQ gain imbalance in dB, specify from the range [-1 1]
 iqPhaseDeg = 1; % IQ phase imbalance in degrees, specify from the range [-2 2]
 iqGainLin = db2mag(iqGaindB); % Convert gain from dB to linear value
 txWaveform = real(txWaveform) + 1i*imag(txWaveform)*iqGainLin*exp(1j*iqPhaseDeg*pi/180); % As specified in Equation-1 of [5]
end

High-Power Amplifier Modeling

The high-power amplifier introduces nonlinear behavior in the form of inband distortion and spectral
regrowth. This example simulates the power amplifiers by using the Rapp model in 802.11ac [2 on
page 8-61], which introduces AM/AM distortion.

 802.11ac Transmitter Measurements

8-47

Model the amplifier by using the comm.MemorylessNonlinearity object, and configure reduced
distortion by specifying a backoff, hpaBackoff, such that the amplifier operates below its saturation
point. You can increase the backoff to reduce EVM for higher MCS values.

pSaturation = 25; % Saturation power of a power amplifier in dBm
hpaBackoff = 13; % Power amplifier backoff in dB

% Create and configure a memoryless nonlinearity to model the amplifier
nonLinearity = comm.MemorylessNonlinearity;
nonLinearity.Method = 'Rapp model';
nonLinearity.Smoothness = 3; % p parameter
nonLinearity.LinearGain = -hpaBackoff;
nonLinearity.OutputSaturationLevel = db2mag(pSaturation-30);

% Apply the model to each transmit antenna
txWaveform = nonLinearity(txWaveform);

Thermal Noise

Add thermal noise to each transmit antenna by using the comm.ThermalNoise object with a noise
figure of 6 dB [3 on page 8-61].

thNoise = comm.ThermalNoise('NoiseMethod','Noise Figure','SampleRate',fs*osf,'NoiseFigure',6);
for i = 1:cfgVHT.NumTransmitAntennas
 txWaveform(:,i) = thNoise(txWaveform(:,i));
end

Modulation Accuracy (EVM), Spectral Flatness and IQ Imbalance Measurements

Downsampling and Filtering

Resample the oversampled waveform down to baseband for physical layer processing and EVM and
spectral flatness measurements, applying a low-pass anti-aliasing filter before downsampling. The
impact of the low-pass filter is visible in the spectral flatness measurement. The anti-aliasing filter is
designed so that all active subcarriers are within the filter passband.

Design resampling filter.

aStop = 40; % Stopband attenuation
ofdmInfo = wlanVHTOFDMInfo('VHT-Data',cfgVHT); % OFDM parameters
SCS = fs/ofdmInfo.FFTLength; % Subcarrier spacing
txbw = max(abs(ofdmInfo.ActiveFrequencyIndices))*2*SCS; % Occupied bandwidth
[L,M] = rat(1/osf);
maxLM = max([L M]);
R = (fs-txbw)/fs;
TW = 2*R/maxLM; % Transition width
firdec = designMultirateFIR(L,M,TW,aStop,'SystemObject',true);

Resample the waveform to baseband.

rxWaveform = firdec(txWaveform);

Receiver Processing

This section detects, synchronizes, and extracts each packet in rxWaveform, then measures the
EVM, spectral flatness, and IQ imbalance. For each packet, the example performs these steps:

8 Test and Measurement

8-48

• Detect the start of the packet
• Extract the non-HT fields
• Estimate and correct coarse carrier frequency offset (CFO)
• Perform fine symbol timing estimate by using the frequency-corrected non-HT fields
• Extract the packet from the waveform by using the fine symbol timing offset
• Correct the extracted packet with the coarse CFO estimate
• Extract the L-LTF, then estimate the fine CFO and correct for the whole packet
• Extract the VHT-LTF and perform channel estimation for each of the transmit streams
• Measure the IQ imbalance from the channel estimate and perform correction on the channel

estimate
• Measure the spectral flatness by using the channel estimate
• Extract and OFDM demodulate the VHT data field
• Perform noise estimation by using the demodulated data field pilots and single-stream channel

estimate at pilot subcarriers
• Phase-correct and equalize the VHT data field by using the channel and noise estimates
• Correct the equalized data subcarriers with the IQ imbalance estimate
• For each data-carrying subcarrier in each spatial stream, find the closest constellation point and

measure the EVM

The diagram shows the processing chain:

The VHT-LTF symbols include pilot symbols to allow for phase tracking, but this example does not
perform phase tracking.

Test the spectral flatness for each packet by measuring the deviation in the magnitude of individual
subcarriers in the channel estimate against the average [1 on page 8-61]. Plot these deviations for
each packet using the helper function vhtTxPlotSpectralFlatness. Plot the average EVM per data-
carrying subcarrier and the equalized symbols for each packet.

Demodulate, equalize, and decode the VHT Data symbols by using the wlanVHTDataRecover
function. Parameterize this function to perform pilot phase tracking and zero-forcing equalization as
required by the standard. This example measures the modulation accuracy from the equalized
symbols.

 802.11ac Transmitter Measurements

8-49

This example makes two different EVM measurements using two instances of comm.EVM.

• RMS EVM per packet, which comprises averaging the EVM over subcarriers, OFDM symbols, and
spatial streams.

• RMS EVM per subcarrier per spatial stream for a packet. Because this configuration maps spatial
streams directly to antennas, this measurement can help detect frequency-dependent
impairments, which may affect individual RF chains differently. This measurement averages the
EVM over OFDM symbols only.

% Setup EVM measurements
[EVMPerPkt,EVMPerSC] = vhtEVMSetup(cfgVHT);

This code configures objects and variables for processing.

% Get indices for accessing each field within the time-domain packet
ind = wlanFieldIndices(cfgVHT);

rxWaveformLength = size(rxWaveform,1);
pktLength = double(ind.VHTData(2));

% Define the minimum length of data we can detect; length of the L-STF in
% samples
minPktLen = double(ind.LSTF(2)-ind.LSTF(1))+1;

% Setup the measurement plots
[hSF,hCon,hEVM] = vhtTxSetupPlots(cfgVHT);

rmsEVM = zeros(numPackets,1);
pktOffsetStore = zeros(numPackets,1);

rng(savedState); % Restore random state

Detect and process packets within the received waveform, rxWaveform by using a while loop, which
performs these steps.

• Detect a packet by indexing into rxWaveform with the sample offset, searchOffset
• Detect and process the first packet within rxWaveform
• Detect and process the next packet by incrementing the sample index offset, searchOffset
• Repeat until no further packets are detected

pktNum = 0;
searchOffset = 0; % Start at first sample (no offset)
while (searchOffset+minPktLen)<=rxWaveformLength
 % Packet detect
 pktOffset = wlanPacketDetect(rxWaveform,cfgVHT.ChannelBandwidth);
 % Packet offset from start of waveform
 pktOffset = searchOffset+pktOffset;
 % If no packet detected or offset outwith bounds of waveform then stop
 if isempty(pktOffset) || (pktOffset<0) || ...
 ((pktOffset+ind.LSIG(2))>rxWaveformLength)
 break;
 end

 % Extract non-HT fields and perform coarse frequency offset correction
 % to allow for reliable symbol timing
 nonht = rxWaveform(pktOffset+(ind.LSTF(1):ind.LSIG(2)),:);

8 Test and Measurement

8-50

 coarsefreqOff = wlanCoarseCFOEstimate(nonht,cfgVHT.ChannelBandwidth);
 nonht = frequencyOffset(nonht,fs,-coarsefreqOff);

 % Determine offset between the expected start of L-LTF and actual start
 % of L-LTF
 lltfOffset = wlanSymbolTimingEstimate(nonht,cfgVHT.ChannelBandwidth);
 % Determine packet offset
 pktOffset = pktOffset+lltfOffset;
 % If offset is without bounds of waveform skip samples and continue
 % searching within remainder of the waveform
 if (pktOffset<0) || ((pktOffset+pktLength)>rxWaveformLength)
 searchOffset = pktOffset+double(ind.LSTF(2))+1;
 continue;
 end

 % Timing synchronization complete; extract the detected packet
 rxPacket = rxWaveform(pktOffset+(1:pktLength),:);
 pktNum = pktNum+1;
 disp([' Packet ' num2str(pktNum) ' at index: ' num2str(pktOffset+1)]);

 % Apply coarse frequency correction to the extracted packet
 rxPacket = frequencyOffset(rxPacket,fs,-coarsefreqOff);

 % Perform fine frequency offset correction on the extracted packet
 lltf = rxPacket(ind.LLTF(1):ind.LLTF(2),:); % Extract L-LTF
 fineFreqOff = wlanFineCFOEstimate(lltf,cfgVHT.ChannelBandwidth);
 rxPacket = frequencyOffset(rxPacket,fs,-fineFreqOff);

 % Extract VHT-LTF samples, demodulate and perform channel estimation
 vhtltf = rxPacket(ind.VHTLTF(1):ind.VHTLTF(2),:);
 vhtltfDemod = wlanVHTLTFDemodulate(vhtltf,cfgVHT);

 % Channel estimate and single stream channel estimate
 [chanEst,chanEstSSPilots] = wlanVHTLTFChannelEstimate(vhtltfDemod,cfgVHT);

 % Perform IQ gain and phase imbalance estimation
 [gainEst,phaseEst,alphaEst,betaEst,gamma,dataRot] = ...
 helperIQImbalanceEstimate(chanEst,cfgVHT);
 fprintf(' Measured IQ gain & phase imbalance: %2.2f dB, %2.2f deg\n',gainEst,phaseEst);

 % Perform IQ gain and phase imbalance correction on channel
 % estimates
 chanEst = chanEst./(alphaEst + betaEst.*gamma); % As specified in Equation-29 of [5]

 % Spectral flatness test
 [pass,deviation,testsc] = wlanSpectralFlatness(chanEst,'VHT',cfgVHT.ChannelBandwidth);
 if pass
 disp(' Spectral flatness passed');
 else
 disp(' Spectral flatness failed');
 end
 % Plot deviation against limits
 vhtTxPlotSpectralFlatness(deviation,testsc,pktNum,hSF);

 % Extract VHT Data samples from the waveform
 vhtdata = rxPacket(ind.VHTData(1):ind.VHTData(2),:);

 % Estimate the noise power in VHT data field

 802.11ac Transmitter Measurements

8-51

 noiseVarVHT = vhtNoiseEstimate(vhtdata,chanEstSSPilots,cfgVHT);

 % Extract VHT Data samples and perform OFDM demodulation, equalization
 % and phase tracking
 [~,~,eqSym] = wlanVHTDataRecover(vhtdata,chanEst,noiseVarVHT,cfgVHT,...
 'EqualizationMethod','ZF','PilotPhaseTracking','PreEQ','LDPCDecodingMethod','norm-min-sum'); % Use zero forcing algorithm for equalization

 % Perform IQ gain and phase imbalance correction on VHT data
 eqSym = eqSym.*dataRot; % Carrier rotation on data subcarriers
 eqSym = ((conj(alphaEst)*eqSym)-(betaEst*conj(eqSym(end:-1:1,:,:))))/((abs(alphaEst)^2)-(abs(betaEst)^2)); % As specified in Equation-30 of [5]

 % Compute RMS EVM over all spatial streams for packet
 rmsEVM(pktNum) = EVMPerPkt(eqSym);
 fprintf(' RMS EVM: %2.2f%%, %2.2fdB\n',rmsEVM(pktNum),20*log10(rmsEVM(pktNum)/100));

 % Compute RMS EVM per subcarrier and spatial stream for the packet
 evmPerSC = EVMPerSC(eqSym); % Nst-by-1-by-Nss

 % Plot RMS EVM per subcarrier and equalized constellation
 vhtTxEVMConstellationPlots(eqSym,evmPerSC,cfgVHT,pktNum,hCon,hEVM);

 % Store the offset of each packet within the waveform
 pktOffsetStore(pktNum) = pktOffset;

 % Increment waveform offset and search remaining waveform for a packet
 searchOffset = pktOffset+pktLength+minPktLen;
end

 Packet 1 at index: 25

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 3.30%, -29.63dB

8 Test and Measurement

8-52

 Packet 2 at index: 9785

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 802.11ac Transmitter Measurements

8-53

 RMS EVM: 3.07%, -30.24dB

 Packet 3 at index: 19545

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.91%, -30.71dB

 Packet 4 at index: 29305

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 3.04%, -30.33dB

 Packet 5 at index: 39065

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.99%, -30.50dB

 Packet 6 at index: 48825

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

8 Test and Measurement

8-54

 RMS EVM: 2.67%, -31.49dB

 Packet 7 at index: 58585

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.93%, -30.65dB

 Packet 8 at index: 68345

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.81%, -31.03dB

 Packet 9 at index: 78105

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.93%, -30.65dB

 Packet 10 at index: 87865

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.73%, -31.28dB

 Packet 11 at index: 97625

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.90%, -30.76dB

 Packet 12 at index: 107385

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.94%, -30.63dB

 Packet 13 at index: 117145

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.84%, -30.94dB

 Packet 14 at index: 126905

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 802.11ac Transmitter Measurements

8-55

 RMS EVM: 2.91%, -30.73dB

 Packet 15 at index: 136665

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 3.09%, -30.20dB

 Packet 16 at index: 146425

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.60%, -31.69dB

 Packet 17 at index: 156185

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 2.99%, -30.49dB

 Packet 18 at index: 165945

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 3.20%, -29.90dB

 Packet 19 at index: 175705

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

 RMS EVM: 3.24%, -29.79dB

 Packet 20 at index: 185465

 Measured IQ gain & phase imbalance: 0.98 dB, 0.98 deg

 Spectral flatness passed

8 Test and Measurement

8-56

 RMS EVM: 3.20%, -29.91dB

 802.11ac Transmitter Measurements

8-57

8 Test and Measurement

8-58

if pktNum>0
 fprintf('Average EVM for %d packets: %2.2f%%, %2.2fdB\n', ...
 pktNum,mean(rmsEVM(1:pktNum)),20*log10(mean(rmsEVM(1:pktNum))/100));
else
 disp('No complete packet detected');
end

Average EVM for 20 packets: 2.96%, -30.56dB

Transmit Spectrum Emission Mask Measurement

This section measures the spectral mask of the filtered and impaired waveform after high-power
amplifier modeling.

The transmitter spectral mask test [4 on page 8-61] uses a time-gated spectral measurement of the
VHT Data field. The example extracts the VHT Data field of each packet from the oversampled
waveform, txWaveform, by using the start indices of each packet within the waveform. Any delay
introduced in the baseband processing chain used to determine the packet indices must be accounted
for when gating the VHT data field within txWaveform. Concatenate the extracted VHT Data fields in
preparation for measurement.

% Indices for accessing each field within the time-domain packet
ind = wlanFieldIndices(cfgVHT,'OversamplingFactor', osf);
startIdx = ind.VHTData(1); % Start of Data
endIdx = ind.VHTData(2); % End of Data
idleNSamps = idleTime*fs*osf; % Idle time samples

 802.11ac Transmitter Measurements

8-59

perPktLength = endIdx+idleNSamps;

idx = zeros(endIdx-startIdx+1,numPackets);
for i = 1:numPackets
 % Start of packet in txWaveform, accounting for the filter delay
 pktOffset = (i-1)*perPktLength;
 % Indices of non-HT Data in txWaveform
 idx(:,i) = pktOffset+(startIdx:endIdx);
end
gatedVHTData = txWaveform(idx(:),:);

The 802.11ac standard specifies the spectral mask relative to the peak power spectral density. The
helper function helperSpectralMaskTest generates a plot which overlays the required mask with the
measured PSD.

if pktNum>0
 helperSpectralMaskTest(gatedVHTData,fs,osf);
end

 Spectrum mask passed

Conclusion and Further Exploration

This example plots four results: spectral flatness, RMS EVM per subcarrier, equalized constellation,
and spectral mask.

8 Test and Measurement

8-60

The high-power amplifier model introduces significant inband distortion and spectral regrowth which
is visible in the EVM results, noisy constellation and out-of-band emissions in the spectral mask plot.
Try increasing the high-power amplifier backoff and note the improved EVM, constellation and lower
out-of-band emissions.

Try using different values for iqGaindB and iqPhaseDeg and note the impact on EVM and
constellation.

Related examples:

• “802.11be Transmitter Measurements” on page 3-2
• “802.11ba WUR Waveform Generation and Analysis” on page 3-14
• “802.11ad Transmitter Spectral Emission Mask Testing” on page 8-74
• “802.11p Spectral Emission Mask Testing” on page 8-79
• “Recover and Analyze Packets in 802.11 Waveform” on page 4-2

Selected Bibliography

1 IEEE Std 802.11™-2020 IEEE Standard for Information Technology - Telecommunications and
Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 Loc and Cheong. IEEE P802.11 Wireless LANs. TGac Functional Requirements and Evaluation
Methodology Rev. 16. 2011-01-19.

3 Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd Edition.
United Kingdom: Cambridge University Press, 2013.

4 Archambault, Jerry, and Shravan Surineni. "IEEE 802.11 spectral measurements using vector
signal analyzers." RF Design 27.6 (2004): 38-49.

5 M. Janaswamy, N. K. Chavali and S. Batabyal, "Measurement of transmitter IQ parameters in HT
and VHT wireless LAN systems," 2016 International Conference on Signal Processing and
Communications (SPCOM), Bangalore.

 802.11ac Transmitter Measurements

8-61

Generate Wireless Waveform in Simulink Using App-Generated
Block

This example shows how to configure and use the block that is generated using the Export to
Simulink capability that is available in the Wireless Waveform Generator app.

Introduction

The Wireless Waveform Generator app is an interactive tool for creating, impairing, visualizing,
and exporting waveforms. You can export the waveform to your workspace or to a .mat or .bb file.
You can also export the waveform generation parameters to a runnable MATLAB® script or a
Simulink® block. You can use the exported Simulink block to reproduce your waveform in Simulink.
This example shows how to use the Export to Simulink capability of the app and how to configure
the exported block to generate waveforms in Simulink.

Although this example focuses on exporting an OFDM waveform, the same process applies for all of
the supported waveform types.

Export Wireless Waveform Configuration to Simulink

Open the Wireless Waveform Generator app by clicking the app icon on the Apps tab, under
Signal Processing and Communications. Alternatively, enter wirelessWaveformGenerator at
the MATLAB command prompt.

In the Waveform Type section, select an OFDM waveform by clicking OFDM. In the left-most pane
of the app, adjust any configuration parameters for the selected waveform. Then export the
configuration by clicking Export in the app toolstrip and selecting Export to Simulink.

8 Test and Measurement

8-62

The Export to Simulink option creates a Simulink block, which outputs the selected waveform when
you run the Simulink model. The block is exported to a new model if no open models exist.

modelName = 'WWGExport2SimulinkBlock';
open_system(modelName);

The Form output after final data value by block parameter specifies the output after all of the
specified signal samples are generated. The value options for this parameter are Cyclic
repetition and Setting to zero. The Cyclic repetition option repeats the signal from the
beginning after it reaches the last sample in the signal. The Setting to zero option generates
zero-valued outputs for the duration of the simulation after generating the last frame of the signal.
The Waveform sample rate (Fs) and Waveform length block parameters are derived from the
waveform configuration that is available in the Code tab of the Mask Editor dialog box. For further
information about the block parameters, see Waveform From Wireless Waveform Generator App. This
figure shows the parameters of the exported block.

close_system(modelName);

Connect a Spectrum Analyzer block to the exported block.

 Generate Wireless Waveform in Simulink Using App-Generated Block

8-63

modelName = 'WWGExport2SimulinkModel';
open_system(modelName);

Simulate the model to visualize the waveform using the current configuration.

sim(modelName);

The Spectrum Analyzer block inherits the Waveform sample rate (Fs) parameter, which is 64 MHz.

close_system(modelName);

Modify Wireless Waveform Configuration

When you run the Simulink model, the exported block outputs the waveform generated in the Code
tab of the Mask Editor dialog box for the block. The MATLAB code that initializes the waveform in
this tab corresponds to the configuration that you selected in the Wireless Waveform Generator
app before exporting the block. To modify the configuration of the waveform, choose one of these
options:

• Open the Wireless Waveform Generator app, select the configuration of your choice, and export
a new block. This option provides interaction with an app interface instead of MATLAB code,

8 Test and Measurement

8-64

parameter range validation during the parameterization process, and visualization of the
waveform before running the Simulink model.

• Update the configuration parameters that are available in the Code tab of the Mask Editor dialog
box of the exported block. This option requires modifying the MATLAB code available in this tab so
that the parameter range validation occurs only when you apply the changes. This option does not
provide visualization of the waveform before running the Simulink model. Modifying the waveform
parameters using this option is not recommended if you are not familiar with the MATLAB code
that generates the selected waveform.

You can update the configuration in the Code tab of the Mask Editor. To open the Mask Editor, click
the exported block and press Ctrl+M.

Use the MATLAB code that is available in the Code tab to update the parameters of your choice. For
example, set the subcarrier spacing, scs, to 1,500,000 Hz.

 Generate Wireless Waveform in Simulink Using App-Generated Block

8-65

Click OK to apply the changes and close the Mask Editor dialog box. Simulate the model to visualize
the updated waveform.

modelName = 'WWGExport2SimulinkModelSCSModified';
sim(modelName);

8 Test and Measurement

8-66

The Spectrum Analyzer block now shows a sample rate of 96 MHz, which is 1.5 times the previous
sample rate, as expected.

Share Wireless Waveform Configuration with Other Blocks in the Model

To access read-only block parameters and waveform configuration parameters, use the UserData
common block property, which is a structure with these fields.

• WaveformConfig: Waveform configuration
• WaveformLength: Waveform length
• Fs: Waveform sample rate

You can access the user data of the exported block by using the get_param function.

get_param([gcs '/OFDM Waveform Generator'],'UserData')

ans =

 struct with fields:

 WaveformConfig: [1x1 comm.OFDMModulator]
 WaveformLength: 8000
 Fs: 96000000

Store the structure available in the user data in a base workspace variable by using the InitFcn in
the callback. The InitFcn callback is executed during a model update and simulation. To use this
callback, click the MODELING tab, then click the Model Settings dropdown, and click the Model
Properties option. In the Callbacks pane, select the InitFcn callback. Assign the user data to a
new base workspace variable (for example, cfg).

 Generate Wireless Waveform in Simulink Using App-Generated Block

8-67

The parameters that are available in the user data of the exported block are updated every time you
apply configuration changes in the Code tab.

To demodulate the OFDM waveform, add an OFDM Demodulator block to the model. Connect an
AWGN Channel block between the OFDM Waveform Generator and OFDM Demodulator blocks to add
white Gaussian noise to the input signal. Also add a Constellation Diagram block to plot the
demodulated symbols.

modelName = 'WWGExport2SimulinkModelWithDemod';
open_system(modelName);

The parameters that are required to configure the OFDM Demodulator block must match the
parameters that are used to configure the exported block, (otherwise, demodulation fails). To access
the configuration parameters of the exported block, use the variable cfg. This figure shows the
parameters of the OFDM Demodulator block.

8 Test and Measurement

8-68

Because the OFDM Demodulator block requires the entire OFDM waveform for demodulation, set the
Samples per frame parameter in the exported block to cfg.WaveformLength. Simulate the model.

sim(modelName);

 Generate Wireless Waveform in Simulink Using App-Generated Block

8-69

After demodulating the OFDM waveform by using the OFDM Demodulator block, the Constellation
Diagram block displays the resulting QAM symbols.

Generate Multicarrier Waveforms

For multicarrier generation, the sampling rates for all of the waveforms must be the same. To shift
the waveforms to a carrier offset and aggregate them, you can use the Multiband Combiner block.

modelName = 'WWGExport2SimulinkMulticarrier';
open_system(modelName);

8 Test and Measurement

8-70

To shift the waveforms in frequency, you might have to increase the sampling rates. The Multiband
Combiner block provides the option to oversample the input waveforms before shifting and combining
them. This figure shows the parameters of the Multiband Combiner block.

 Generate Wireless Waveform in Simulink Using App-Generated Block

8-71

Simulate the model to visualize the waveforms that are centered at -80, 20, and 100 MHz.

sim(modelName);

8 Test and Measurement

8-72

See Also
Blocks
Waveform From Wireless Waveform Generator App

Related Examples
• “Modeling and Testing an 802.11ax RF Transmitter” on page 8-21
• “Modeling and Testing an 802.11ax RF Receiver with 5G Interference” on page 8-2

 Generate Wireless Waveform in Simulink Using App-Generated Block

8-73

802.11ad Transmitter Spectral Emission Mask Testing

This example shows how to perform pulse shaping and spectrum emission mask testing on an IEEE®
802.11ad™ waveform.

Introduction

IEEE 802.11ad [1] standard, commonly referred to as directional multi-gigabit (DMG), provides data
throughput up to 7 Gbps using the 60 GHz industrial, scientific, and medical (ISM) frequency band.
The DMG standard supports three PHY types:

• A Control PHY using MCS 0
• A Single Carrier (SC) PHY using MCS 1 to MCS 12 and low power SC PHY using MCS 25 to MCS

32
• An OFDM PHY using MCS 13 to MCS 24.

DMG defines four 2.16 GHz wide operating channels, typically in the 57-66 GHz band. The spectral
mask test, as demonstrated in this example, ensures a transmission in one channel does not cause
substantial interference in adjacent channels. The DMG channelization is shown in the figure below.

The SC DMG PHY uses single-carrier (SC) modulation for low cost, short range applications. This
example shows how pulse shaping and spectrum mask measurements can be performed on an SC
DMG modulated waveform. The waveform is generated using WLAN Toolbox™, but a waveform
captured with a spectrum analyzer could also be used. The transmitter spectrum mask and required
spectral flatness for DMG configuration is specified in IEEE 802.11ad [1], Section 20.3.2.

This example generates five DMG SC packets, each separated by a one microsecond gap. Random
data is used in each packet and pi/2-16QAM modulation is used. To meet the spectral mask
requirements, the baseband waveform is upsampled and filtered to reduce the out-of-band emissions.
A high power amplifier (HPA) model is used to introduce inband distortion and spectral regrowth. The
spectral emission mask measurement is performed on the upsampled waveform after the HPA
modeling. The test schematic is illustrated in the following diagram:

8 Test and Measurement

8-74

DMG, Single Carrier Packet Configuration

In this example, an IEEE 802.11ad waveform consisting of multiple DMG SC packets is generated.
The DMG SC waveform properties are specified in a wlanDMGConfig configuration object. The
object is configured for an MCS index of 5, with no TrainingLength fields appended to the packets.
Per the test requirement (specified in IEEE 802.11ad Section 21.3.2), the PSDULength is set to
20000 for the packet to ensure that the transmit spectral mask is measured on a DMG packet longer
than 10 microseconds.

cfgDMG = wlanDMGConfig; % DMG packet configuration
cfgDMG.MCS = 5; % SC PHY with pi/2-BPSK modulation
cfgDMG.PSDULength = 20000; % Length in Bytes

Baseband Waveform Generation

The waveform generator can be configured to generate one or more packets with idle time between
each packet. In this example, wlanWaveformGenerator is configured to generate five packets filled
with random payload data. Each packet is separated by a one microsecond idle period in between and
a random scrambler seed is used to generate each packet.

% Set random stream for repeatability of results
s = rng(98765);

% Generate a multi-packet waveform
idleTime = 1e-6; % One microsecond idle time between packets
numPackets = 5; % Generate five packets

% Create random bits for all payload data; PSDULength is in bytes
psdu = randi([0 1],cfgDMG.PSDULength*8*numPackets,1);

% Override the ScramblerInitialization property of the DMG configuration
% object by specifying the scrambler initialization
genWaveform = wlanWaveformGenerator(psdu,cfgDMG,...
 'IdleTime',idleTime, ...
 'NumPackets',numPackets, ...
 'ScramblerInitialization',randi([1 127],numPackets,1));

% Get the sampling rate of the waveform
fs = wlanSampleRate(cfgDMG);
disp(['Baseband sampling rate: ' num2str(fs/1e6) ' Msps']);

Baseband sampling rate: 1760 Msps

Oversampling and Filtering

Spectral filtering is used to reduce the out-of-band spectral emissions due to the spread spectrum
characteristics of the transmitted waveform and spectral regrowth caused by the HPA in an RF chain.
The waveform must be oversampled to model the effect of the HPA on the waveform and view the out-
of-band spectral emissions. In this example, the waveform is oversampled and filtered through a
raised cosine filter using comm.RaisedCosineTransmitFilter. To meet the spectral mask
requirements, the raised cosine filter is truncated to the duration of eight symbols and the roll-off
factor is set to 0.5.

% Define the pulse shaping filter characteristics
Nsym = 8; % Filter span in symbol durations
beta = 0.5; % Roll-off factor
osps = 4; % Output samples per symbol

 802.11ad Transmitter Spectral Emission Mask Testing

8-75

% Create raised cosine transmit filter system object
rcosFlt = comm.RaisedCosineTransmitFilter(...
 'Shape','Normal', ...
 'RolloffFactor',beta, ...
 'FilterSpanInSymbols',Nsym, ...
 'OutputSamplesPerSymbol',osps);

% Filter transmit signal for pulse shaping
filterWaveform = rcosFlt([genWaveform; zeros(Nsym/2,1)]);

% Plot the magnitude and phase response of the pulse shaping filter
h = fvtool(rcosFlt,'Analysis','freq');
h.FS = osps*fs; % Set sampling rate
h.NormalizedFrequency = 'off'; % Plot responses against frequency

High Power Amplifier Modeling

Within an RF chain, the HPA is a necessary component but it introduces nonlinear behavior in the
form of inband distortion and spectral regrowth. The Rapp model, described in [2], can be used to
model an 802.11ad power amplifier. The Rapp model causes AM/AM distortion and is modeled with
comm.MemorylessNonlinearity. The HPA is backed-off to operate below the saturation point to
reduce distortion.

hpaBackoff = 0.5; % Power Amplifier backoff in dB

% Create and configure a memoryless nonlinearity to model HPA

8 Test and Measurement

8-76

nonLinearity = comm.MemorylessNonlinearity;
nonLinearity.Method = 'Rapp model';
nonLinearity.Smoothness = 0.81; % Smoothness factor
nonLinearity.LinearGain = 20*log10(4.65) - hpaBackoff; % Small signal gain
nonLinearity.OutputSaturationLevel = 0.58; % Saturation level

% Apply the model
txWaveform = nonLinearity(filterWaveform);

Transmit Spectrum Emission Mask Measurement

IEEE 802.11ad [1], Section 20.3.2, specifies the transmit spectral mask that all DMG waveforms
must adhere to and describes the packet characteristics. According to the test definition, packets
should have no training fields appended and be greater than 10 microseconds in duration.

dBrLimits = [-30 -30 -22 -17 0 0 -17 -22 -30 -30];
fLimits = [-Inf -3.06 -2.7 -1.2 -0.94 0.94 1.2 2.7 3.06 Inf] * 1e3;
rbw = 1e6; % Resolution bandwidth in Hz
vbw = 300e3; % Video bandwidth in Hz

Use the helper function helperSpectralMaskTest to generate a plot that overlays the required
spectral mask with the measured PSD. It checks the transmitted PSD levels to be within the specified
mask levels and displays a pass/fail status after the test.

helperSpectralMaskTest(txWaveform,fs,osps,dBrLimits,fLimits,rbw,vbw);

% Restore default stream
rng(s);

 Spectrum mask passed

 802.11ad Transmitter Spectral Emission Mask Testing

8-77

Conclusion and Further Exploration

The transmit spectral mask for a DMG SC waveform in the 60 GHz band for a 2.16 GHz channel
bandwidth is shown in this example. It also illustrates that the spectrum of the transmitted signal
satisfies regulatory restrictions by falling within the spectral mask after pulse shaping. A similar
result can be generated for DMG Control and OFDM PHYs.

The HPA model and the spectral filtering affect the out-of-band emissions in the spectral mask plot.
For Single Carrier and Control PHY, you can try using different pulse shaping filter parameters and/or
decrease or increase the smoothness factor.

For information on other transmitter measurements like modulation accuracy and spectral flatness,
refer to the following examples:

• “802.11ac Transmitter Measurements” on page 8-46
• “802.11p Spectral Emission Mask Testing” on page 8-79

Selected Bibliography

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 Eldad Perahia, et. al. TGad Evaluation Methodology, IEEE 802.11-09/0296r16

8 Test and Measurement

8-78

802.11p Spectral Emission Mask Testing

This example shows how to perform spectrum emission mask tests for an IEEE® 802.11p™
transmitted waveform.

Introduction

IEEE 802.11p is an approved amendment to the IEEE 802.11™ standard to enable support for
wireless access in vehicular environments (WAVE). Using the half-clocked mode with a 10 MHz
channel bandwidth, it operates at the 5.85-5.925 GHz bands, for which it defines additional spectral
emission masks.

This example shows how to perform spectral mask measurements on a waveform generated by using
WLAN Toolbox™ software. Alternatively, you can perform this measurement on a waveform captured
with a spectrum analyzer.

The example generates a waveform consisting of three 10 MHz IEEE 802.11p packets separated by a
32 microsecond gap. Each packet contains random data and uses 16-QAM. The example oversamples
the waveform using a larger IFFT than required for the nominal baseband rate and does not perform
spectral filtering, and uses a high-power amplifier (HPA) model, which introduces in-band distortion
and spectral regrowth. The example performs spectral emission mask measurement on the
upsampled waveform after HPA modeling. This diagram shows the test setup.

Non-HT Packet Configuration

Set the non-high-throughput (non-HT) transmission parameters by using the wlanNonHTConfig
object, specifying 10 MHz bandwidth operation as used by IEEE 802.11p.

cfgNHT = wlanNonHTConfig; % Create packet configuration
cfgNHT.ChannelBandwidth = 'CBW10'; % 10 MHz
cfgNHT.MCS = 4; % Modulation 16QAM, rate-1/2
cfgNHT.PSDULength = 1000; % PSDU length in bytes

Waveform Generation

This section configures and generates a waveform containing three packets with an idle time of 32
microseconds between each packet.

To model the effect of a HPA on the waveform and view the out-of-band spectral emissions, the
waveform must be oversampled. This example generates the waveform using a larger IFFT than

 802.11p Spectral Emission Mask Testing

8-79

required for the nominal baseband rate, resulting in an oversampled waveform. The example does not
perform spectral filtering.

Set random stream for repeatability of results, specify an oversampling factor, and generate random
data of the required PSDU length.

s = rng(98765);
osf = 3;
idleTime = 32e-6;
numPackets = 3;
data = randi([0 1],cfgNHT.PSDULength*8*numPackets,1);

Generate the multi-packet waveform and calculate the nominal baseband sample rate.

genWaveform = wlanWaveformGenerator(data,cfgNHT, ...
 OversamplingFactor=osf, ...
 NumPackets=numPackets,...
 IdleTime=idleTime);
fs = wlanSampleRate(cfgNHT);

HPA Modeling

The HPA introduces nonlinear behavior in the form of inband distortion and spectral regrowth. This
example simulates the power amplifiers by using the Rapp model in 802.11ac, which introduces
AM/AM distortion.

Model the amplifier by using comm.MemorylessNonlinearity object, and configure reduced
distortion by specifying a back-off, hpaBackoff, such that the amplifier operates below its saturation
point. You can increase the backoff to reduce EVM for higher MCS values.

pSaturation = 25; % Saturation power of a power amplifier in dBm
hpaBackoff = 16; % dB

Create and configure a memoryless nonlinearity to model the amplifier.

nonLinearity = comm.MemorylessNonlinearity;
nonLinearity.Method = 'Rapp model';
nonLinearity.Smoothness = 3; % p parameter
nonLinearity.LinearGain = -hpaBackoff; % dB
nonLinearity.OutputSaturationLevel = db2mag(pSaturation-30);

Apply the model to the transmit waveform.

txWaveform = nonLinearity(genWaveform);

Transmit Spectrum Emission Mask Measurement

This section performs the spectral emission mask test non-HT Data field.

The IEEE 802.11p standard classifies stations according to the allowed maximum transmit powers (in
mW). For the four different classes of stations, the standard defines four different spectral emission
masks, and defines the spectral mask limits relative to the peak power spectral density (PSD). This
example measures the spectrum emission mask for a Class A station.

% IEEE Std 802.11-2016 Annex D.2.3, Table D-5: Class A STA
dBrLimits = [-40 -40 -28 -20 -10 0 0 -10 -20 -28 -40 -40];
fLimits = [-Inf -15 -10 -5.5 -5 -4.5 4.5 5 5.5 10 15 Inf];

8 Test and Measurement

8-80

Extract the non-HT Data field of each packet from the oversampled txWaveform by using the start
index of each packet and concatenate the extracted non-HT Data fields in preparation for
measurement.

ind = wlanFieldIndices(cfgNHT, OversamplingFactor=osf);
startIdx = ind.NonHTData(1); % Start of non-HT Data
endIdx = ind.NonHTData(2); % End of non-HT Data
idleNSamps = idleTime*fs*osf; % Idle time samples
perPktLength = endIdx+idleNSamps;

idx = zeros(endIdx-startIdx+1, numPackets);
for i = 1:numPackets
 % Start of packet in txWaveform, accounting for the filter delay
 pktOffset = (i-1)*perPktLength;
 % Indices of non-HT Data in txWaveform
 idx(:,i) = pktOffset+(startIdx:endIdx);
end
% Select the Data field for the individual packets
gatedNHTDataTx = txWaveform(idx(:), :);

The helperSpectralMaskTest function overlays the required spectral mask with the measured
PSD and checks that the transmitted PSD levels is within the specified mask levels, displaying the
result as a pass or fail.

Evaluate PSD and test for compliance.

helperSpectralMaskTest(gatedNHTDataTx,fs,osf,dBrLimits,fLimits);

 Spectrum mask passed

 802.11p Spectral Emission Mask Testing

8-81

Restore the default random stream.

rng(s);

Conclusion and Further Exploration

This example shows how to measure the transmit spectral mask for Class A Stations at the 5.85-5.925
GHz bands for a 10 MHz channel spacing, and how to ensure that the peak spectral density of the
transmitted signal falls within the spectral mask to satisfy regulatory restrictions. You can generate a
similar result for a 5 MHz channel spacing.

The HPA model affects the out-of-band emissions in the spectral mask plot. For different station
classes with higher relative dB values, try increasing the backoff for lower emissions.

For information on other transmitter measurements like modulation accuracy and spectral flatness,
and other formats, refer to the following examples:

• “802.11be Transmitter Measurements” on page 3-2
• “802.11ba WUR Waveform Generation and Analysis” on page 3-14
• “802.11ad Transmitter Spectral Emission Mask Testing” on page 8-74
• “802.11ac Transmitter Measurements” on page 8-46
• “Recover and Analyze Packets in 802.11 Waveform” on page 4-2

8 Test and Measurement

8-82

Selected Bibliography

1 IEEE Std 802.11-2016: IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE, New York, NY, USA, 1999-2016.

2 IEEE Std 802.11p-2010: IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area networks - Specific
requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, Amendment 6: Wireless Access in Vehicular Environments, IEEE, New York, NY,
USA, 2010.

3 Archambault, Jerry, and Shravan Surineni. "IEEE 802.11 spectral measurements using vector
signal analyzers." RF Design 27.6 (2004): 38-49.

 802.11p Spectral Emission Mask Testing

8-83

Code Generation and Deployment

9

What is C Code Generation from MATLAB?
You can use WLAN Toolbox together with MATLAB® Coder™ to:

• Create a MEX file to speed up your MATLAB application.
• Generate ANSI®/ISO® compliant C/C++ source code that implements your MATLAB functions and

models.
• Generate a standalone executable that runs independently of MATLAB on your computer or

another platform.

In general, the code you generate using the toolbox is portable ANSI C code. In order to use code
generation, you need a MATLAB Coder license. For more information, see “Get Started with MATLAB
Coder” (MATLAB Coder).

Using MATLAB Coder
Creating a MATLAB Coder MEX file can substantially accelerate your MATLAB code. It is also a
convenient first step in a workflow that ultimately leads to completely standalone code. When you
create a MEX file, it runs in the MATLAB environment. Its inputs and outputs are available for
inspection just like any other MATLAB variable. You can then use MATLAB tools for visualization,
verification, and analysis.

The simplest way to generate MEX files from your MATLAB code is by using the codegen function at
the command line. For example, if you have an existing function, myfunction.m, you can type the
commands at the command line to compile and run the MEX function. codegen adds a platform-
specific extension to this name. In this case, the "mex" suffix is added.

codegen myfunction.m
myfunction_mex;

Within your code, you can run specific commands either as generated C code or by using the
MATLAB engine. In cases where an isolated command does not yet have code generation support,
you can use the coder.extrinsic command to embed the command in your code. This means that
the generated code reenters the MATLAB environment when it needs to run that particular
command. This is also useful if you want to embed commands that cannot generate code (such as
plotting functions).

To generate standalone executables that run independently of the MATLAB environment, create a
MATLAB Coder project inside the MATLAB Coder Integrated Development Environment (IDE).
Alternatively, you can call the codegen command in the command line environment with appropriate
configuration parameters. A standalone executable requires you to write your own main.c or
main.cpp function. See “Generating Standalone C/C++ Executables from MATLAB Code” (MATLAB
Coder) for more information.

C/C++ Compiler Setup
Before using codegen to compile your code, you must set up your C/C++ compiler. For 32-bit
Windows platforms, MathWorks® supplies a default compiler with MATLAB. If your installation does
not include a default compiler, you can supply your own compiler. For the current list of supported
compilers, see Supported and Compatible Compilers on the MathWorks website. Install a compiler
that is suitable for your platform, then read “Setting Up the C or C++ Compiler” (MATLAB Coder).

9 Code Generation and Deployment

9-2

https://www.mathworks.com/support/requirements/supported-compilers.html

After installation, at the MATLAB command prompt, run mex -setup. You can then use the codegen
function to compile your code.

Functions and System Objects That Support Code Generation
All WLAN Toolbox functions and System objects support code generation.

See Also
Functions
codegen | mex

More About
• “Code Generation Workflow” (MATLAB Coder)
• Generate C Code from MATLAB Code Video

 What is C Code Generation from MATLAB?

9-3

https://www.mathworks.com/videos/generate-c-code-from-matlab-code-108233.html

Code Generation of WLAN Toolbox Features

This example shows how to generate MEX files and efficient C/C++ code for the WLAN Toolbox™
waveform generator function and verify its correct behavior. Additionally, it shows how to work
around limitations of code generation for WLAN Toolbox channel models. All WLAN Toolbox functions
and System objects™ are supported for C/C++ code generation.

Introduction

With MATLAB Coder™, you can generate efficient, portable C source code, standalone executables,
and MEX functions for deployment in desktop and embedded applications. You can speed up your
MATLAB code using MEX functions or integrate generated source code and static or dynamic
libraries into your C/C++ code projects. See “Setting Up the C or C++ Compiler” (MATLAB Coder)
for more information about how to set up the C/C++ compiler. In order to use code generation, you
need a MATLAB Coder license.

This example uses the codegen function to generate code for the WLAN Toolbox waveform generator
and the TGax channel System object. First, prepare the required input arguments of the waveform
generator and configure MATLAB Coder to generate MEX files. Next, compare the output of the
generated MEX files and the original MATLAB code. Finally, the example shows how to work around
limitations of code generation affecting WLAN Toolbox.

Input Arguments Definition

For code generation, you must specify the size and type of the input arguments to your entry-point
function. In this case, you specify the input arguments of the wlanWaveformGenerator function and
packet format configuration object. The mandatory arguments of the waveform generator are the
data bits of the physical layer service data unit (PSDU) and the waveform format configuration.
Additional inputs such as the idle time, scrambler initialization, and window transition time depend
on the format configuration. Specify the additional inputs as name-value pairs. See
wlanWaveformGenerator for more information.

You can use example values of the input arguments and the codegen function automatically derives
their size, class, and complexity. However, the size of the input data vector depends on properties of
the format configuration such as the channel bandwidth and coding. Use the coder.typeof function
to define a variable-size input data vector that adapts to the format configuration properties as
required.

Thus, you can run the generated code for multiple parameter sets of the format configuration object.
For more information about specifying variable-size input arguments, see “Generate Code for
Variable-Size Data” (MATLAB Coder). In this case, specify only the first dimension as variable-size.

variableDims = [1 0];

Variable-size vectors can be upper bounded or unbounded. To allow for full flexibility, you can select
the upper bound to be the maximum aggregated MAC protocol data unit (A-MPDU) length, i.e.,
6500631 bytes.

upperBound = 6500631*8; % Upper bound in bits

Next, use coder.typeof to define an input type as a column vector of doubles with a maximum size
of upperBound-by-1, with the first dimension variable-size.

inputBits = coder.typeof(double(0),[upperBound 1],variableDims);

9 Code Generation and Deployment

9-4

As the inputBits data type is double, you can only use double-precision values for the input bits of
the generated MEX and C/C++ code.

Next, create a high-efficiency single-user (HE SU) format configuration object with default
parameters and its corresponding configuration structure using the coder.typeof function. Use
this structure to specify the type and size of any property of the HE SU format configuration object.

cfgHESU = wlanHESUConfig;
cfgHESUcg = coder.typeof(cfgHESU);

There are two possible forward-error-correction (FEC) coding types for the HE-Data: low-density
parity-check, specified by setting the ChannelCoding property of cfgHESU to 'LDPC', and binary
convolutional coding, specified as 'BCC'. Since these are character arrays of different lengths, use
the coder.typeof function to define a variable-length row vector of maximum size 1-by-4
characters.

cfgHESUcg.Properties.ChannelCoding = coder.typeof('LDPC',[1 4],[0 1]);

Use the same strategy for the channel bandwidth property. In this case, the longest character array
corresponds to 'CBW320', so six characters are enough to cover all other possible cases, i.e.,
'CBW20', 'CBW40', 'CBW80', 'CBW160', and 'CBW320'.

cfgHESUcg.Properties.ChannelBandwidth = coder.typeof('CBW320',[1 6],[0 1]);

Specify optional arguments of the waveform generator such as the windowing transition time using
name-value pairs. Use coder.Constant to define the name of the argument because it is a string
literal that is not expected to change.

WindowTransitionTime_Name = coder.Constant('WindowTransitionTime');

Use an example value from which the codegen function derives its type and size. This technique is
only suitable for fixed-size input arguments.

WindowTransitionTime_Value = 0;

Code Generation for the WLAN Toolbox Waveform Generator

Once the input arguments are specified for code generation, configure MATLAB Coder to generate
MEX files and C/C++ code. A MEX file acts as an interface to the generated C/C++ code that can run
in MATLAB. MEX file generation is usually the first step in the code generation workflow as it
provides a convenient way for verifying the generated C/C++ code.

You can generate a MEX file, C/C++ code, a dynamic library, or a standalone executable by creating a
MATLAB Coder configuration object and specifying the build type as 'MEX', 'LIB', 'DLL', or
'EXE', respectively.

BuildType = 'MEX';
cfgCoder = coder.config(BuildType);

Generate a report containing useful information about the code generation process.

cfgCoder.GenerateReport = true;

The name of the generated MEX file is the entry-point function name appended by the suffix 'mex',
that is, wlanWaveformGenerator_mex. To specify a different name for your MEX file, use the option
-o output_file_name. You can find the generated MEX files in your local folder and the generated
C/C++ code in the folder codegen\mex\wlanWaveformGenerator.

 Code Generation of WLAN Toolbox Features

9-5

Users of Microsoft Visual C++ product family may see the C4101 compiler warning indicating an
unreferenced local variable.

inputArgs = {inputBits,cfgHESUcg,WindowTransitionTime_Name,WindowTransitionTime_Value}; %#ok<NASGU>
codegen wlanWaveformGenerator -args inputArgs -config cfgCoder -o wlanWaveformGenerator_HESU_mex

Code generation successful: To view the report, open('codegen\mex\wlanWaveformGenerator\html\report.mldatx')

Next, verify that the generated MEX file behaves as expected when you use different configurations
of the ChannelBandwidth and ChannelCoding by comparing its output to that of the
wlanWaveformGenerator.

% Create a HE SU format configuration object specifying the channel
% bandwidth, coding, number of antennas and streams.
cfgHESU = wlanHESUConfig('ChannelBandwidth','CBW20','ChannelCoding','BCC', ...
 'NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

% Set the value of the window transition time
WindowTransitionTime = 1e-09;

% Create a PSDU of size defined by the getPSDULength function
inputBits = randi([0 1],getPSDULength(cfgHESU)*8,1);

% Run the wlanWaveformGenerator
waveformMAT = wlanWaveformGenerator(inputBits,cfgHESU,'WindowTransitionTime',WindowTransitionTime);

% Run the generated MEX file
waveformMEX = wlanWaveformGenerator_HESU_mex(inputBits,cfgHESU,'WindowTransitionTime',WindowTransitionTime);

% Compare the outputs of the wlanWaveformGenerator and generated MEX file
difference = waveformMAT - waveformMEX;

% Check the results are consistent
if max(abs(difference),[],'all') > 1e-10
 error('The MEX file generated does not produce the same results as wlanWaveformGenerator.')
else
 disp('The outputs of the generated MEX file and the wlanWaveformGenerator are equal.')
end

The outputs of the generated MEX file and the wlanWaveformGenerator are equal.

Additional Options for Code Generation

In addition to the reporting options used above, you can configure MATLAB Coder with more
advanced options.

• Generate C/C++ code only but do not build object code or MEX files setting
cfgCoder.GenCodeOnly = true. This can save time when you iterate between modifying
MATLAB code and inspecting the generated C/C++ code. To generate a MEX file, set this value to
false.

• Configure MATLAB Coder for optimized C/C++ code generation by setting
cfgCoder.BuildConfiguration = 'Faster Runs'. This option is available only for 'LIB',
'DLL', and 'EXE' build types.

See the coder.config (MATLAB Coder) reference page for more information.

9 Code Generation and Deployment

9-6

Limitations of Code Generation

“WLAN Channel Models” are System objects, which are designed specifically for implementing and
simulating dynamic systems with inputs that change over time. Consider these limitations for code
generation of System objects:

• Nontunable property values must be constant and can only be assigned once before you call the
object, including the assignment in the constructor.

• You cannot pass in a System object™ to an entry-point function.

See “System Objects in MATLAB Code Generation” (MATLAB Coder) for more information about
rules and limitations of System objects™ for code generation.

If you try to generate code for the entry-point function named hCustomChannelNT, which creates a
wlanTGaxChannel with a bandwidth specified by the input argument BW and filters the signal
inputSignal, the code generation process fails.

function signalOut = hCustomChannelNT(BW, signalIn)

 % Create a TGax channel with the appropriate bandwidth
 ch = wlanTGaxChannel('ChannelBandwidth',BW);
 % Filter the input signal
 signalOut = ch(signalIn);

end

The error message indicates: Failed to compute constant value for nontunable
property 'ChannelBandwidth'.

The ChannelBandwidth property of the wlanTGaxChannel object is not a constant value because it
depends on the input argument BW of the hCustomChannelNT function. You can work around this by
setting BW to be a constant value.

inputSignal = coder.typeof(complex(0),[Inf 1],[1 0]); %#ok<NASGU>
codegen hCustomChannelNT -args {coder.Constant('CBW320'),inputSignal};

Code generation successful.

However, if you specify a constant value for the channel bandwidth, you cannot change the channel
bandwidth at runtime. The following call hCustomChannelNT_mex('CBW20',inputSignal) fails
because the specified argument BW is not 'CBW320'. It is possible to work around this for a limited
variability of the input arguments using a switch-case block. The function hCustomChannel contains
a switch-case where each of the cases creates a wlanTGaxChannel with the appropriate channel
bandwidth.

function signalOut = hCustomChannel(ChannelBandwidth,signalIn)
%hCustomChannel Creates a TGax channel with the appropriate bandwidth, sample rate and filter the input signal

switch ChannelBandwidth
 case 'CBW20'
 fs = 20e6; % Input signal sample rate
 ch = wlanTGaxChannel('ChannelBandwidth','CBW20','SampleRate',fs);

 Code Generation of WLAN Toolbox Features

9-7

 signalOut = ch(signalIn);
 case 'CBW40'
 fs = 40e6; % Input signal sample rate
 ch = wlanTGaxChannel('ChannelBandwidth','CBW40','SampleRate',fs);
 signalOut = ch(signalIn);
 case 'CBW80'
 fs = 80e6; % Input signal sample rate
 ch = wlanTGaxChannel('ChannelBandwidth','CBW80','SampleRate',fs);
 signalOut = ch(signalIn);
 case 'CBW160'
 fs = 160e6; % Input signal sample rate
 ch = wlanTGaxChannel('ChannelBandwidth','CBW160','SampleRate',fs);
 signalOut = ch(signalIn);
 case 'CBW320'
 fs = 320e6; % Input signal sample rate
 ch = wlanTGaxChannel('ChannelBandwidth','CBW320','SampleRate',fs);
 signalOut = ch(signalIn);
 otherwise
 error('Invalid bandwidth configuration.')
end

end

Note that hCustomChannel creates a new channel object every time it is used, so it does not
preserve the state of the channel.

Next, generate code for hCustomChannel and select multiple channel bandwidths at runtime.

inputSignal = coder.typeof(complex(0),[Inf 1],[1 0]);
BW = coder.typeof('CBW320',[1 6],[0 1]);
inputArgs = {BW,inputSignal};
codegen hCustomChannel -args inputArgs

cfgHESU = wlanHESUConfig;
cfgHESU.ChannelBandwidth = 'CBW20';

inputSignal = wlanWaveformGenerator_HESU_mex([1 0 1]',cfgHESU,'WindowTransitionTime',0);

rng('default') % Set the default random number generator for reproduction purposes
outputSignalMEX = hCustomChannel_mex('CBW20',inputSignal);
rng('default')
outputSignalMAT = hCustomChannel('CBW20',inputSignal);

% Calculate the difference between the MEX and MATLAB files outputs
difference = outputSignalMAT - outputSignalMEX;

% Check the results are consistent
if max(abs(difference),[],'all') > 1e-10
 error('The generated MEX file does not produce the same results as hCustomChannel.')
else
 disp('The outputs of the generated MEX file and hCustomChannel are equal.')
end

Code generation successful.

The outputs of the generated MEX file and hCustomChannel are equal.

Change the channel bandwidth and pass the signal through the channel.

9 Code Generation and Deployment

9-8

cfgHESU.ChannelBandwidth = 'CBW40';
inputSignal = wlanWaveformGenerator_HESU_mex([1 0 1]',cfgHESU,'WindowTransitionTime',0);

rng('default') % Set the default random number generator for reproduction purposes
outputSignalMEX = hCustomChannel_mex('CBW40',inputSignal);
rng('default')
outputSignalMAT = hCustomChannel('CBW40',inputSignal);

% Calculate the difference between the MEX and MATLAB files outputs
difference = outputSignalMAT - outputSignalMEX;

% Check the results are consistent
if max(abs(difference),[],'all') > 1e-10
 error('The MEX file generated does not produce the same results as hCustomChannel.')
else
 disp('The outputs of the generated MEX file and hCustomChannel are equal.')
end

The outputs of the generated MEX file and hCustomChannel are equal.

Further Investigation

You can integrate the generated code with the SystemVerilog Direct Programming Interface (DPI) to
export MATLAB algorithms to ASIC or FPGA verification environments including Synopsys VCS®,
Cadence Incisive or Xcelium, and Mentor Graphics ModelSim or Questa. You can automatically
generate SystemVerilog DPI components from MATLAB functions using MATLAB Coder™ with HDL
Verifier™. The following workflow can be used with MATLAB functions that generate stimuli and
perform analysis or with a MATLAB function that is a behavioral golden reference for the device
under test (DUT) in the ASIC or FPGA verification environment. See “SystemVerilog DPI Component
Generation” (HDL Verifier) (HDL Verifier) to learn more.

 Code Generation of WLAN Toolbox Features

9-9

Software-Defined Radio

10

Image Transmission and Reception Using 802.11 Waveform
and SDR

This example shows how to encode and pack an image file into WLAN packets for transmission and
subsequently decode the packets to retrieve the image. The example also shows how to use a
software-defined radio (SDR) for over-the-air transmission and reception of the WLAN packets.

Introduction

This example imports and segments an image file into multiple medium access control (MAC) service
data units (MSDUs). It passes each MSDU to the wlanMACFrame function to create a MAC protocol
data unit (MPDU). This function also utilizes a wlanMACFrameConfig object as an input, which
sequentially numbers the MPDUs through the SequenceNumber property. The example then passes
the MPDUs to the physical (PHY) layer as PHY Layer Service Data Units (PSDUs). Each PSDU uses a
single non-high-throughput (non-HT), 802.11a™ WLAN packet for transmission. This example creates
a WLAN baseband waveform using the wlanWaveformGenerator function. This function utilizes
multiple PSDUs and processes each to form a series of physical layer convergence procedure (PLCP)
protocol data units (PPDUs) ready for transmission.

The generated waveform then passes through an additive white Gaussian noise (AWGN) channel to
simulate an over-the-air transmission. Subsequently, the wlanMPDUDecode function takes the noisy
waveform and decodes it. Then, the SequenceNumber property in the recovered MAC frame
configuration object allows the example to sequentially order the extracted MSDUs. The information
bits in the multiple received MSDUs combine to recover the transmitted image. This diagram shows
the receiver processing.

10 Software-Defined Radio

10-2

Alternatively, the generated WLAN waveform can be transmitted over the air and received using
these supported SDRs.

Communications Toolbox Support Package for Analog Devices® ADALM-Pluto Radio

• “Installation and Setup” (Communications Toolbox Support Package for Analog Devices ADALM-
Pluto Radio)

• “Supported Hardware” (Communications Toolbox Support Package for Analog Devices ADALM-
Pluto Radio)

Communications Toolbox Support Package for USRP® Embedded Series Radio

• “Installation and Setup” (Communications Toolbox Support Package for USRP Embedded Series
Radio)

• “Hardware Support” (Communications Toolbox Support Package for USRP Embedded Series
Radio)

Communications Toolbox Support Package for Xilinx® Zynq®-Based Radio

 Image Transmission and Reception Using 802.11 Waveform and SDR

10-3

• “Installation and Setup” (Communications Toolbox Support Package for Xilinx Zynq-Based Radio)
• “Hardware Support” (Communications Toolbox Support Package for Xilinx Zynq-Based Radio)

Example Setup

Before running the example, set the channel variable to be one of these options:

• OverTheAir: Use an SDR to transmit and receive the WLAN waveform
• GaussianNoise: Pass the transmission waveform through an AWGN channel (default)
• NoImpairments: Pass the transmission waveform through with no impairments

If you set channel to OverTheAir, set frequency band and channel, transmission gain, reception
gain, and desired SDR:

• Set to Pluto to use the ADALM-Pluto Radio (default)
• Set to E3xx to use the USRP Embedded Series Radio
• Set to AD936x or FMCOMMS5 to use the Xilinx Zynq-Based Radio

channel = ;
if strcmpi(channel,"OverTheAir")

 deviceName = ;

 channelNumber = ;

 frequencyBand = ;

 txGain = ;

 rxGain = ;
elseif strcmpi(channel,"GaussianNoise")
 % Specify SNR of received signal for a simulated channel

 SNR = ;
end

Configure all the scopes and figures for the example.

% Setup handle for image plot
if ~exist('imFig','var') || ~ishandle(imFig) %#ok<SUSENS>
 imFig = figure;
 imFig.NumberTitle = 'off';
 imFig.Name = 'Image Plot';
 imFig.Visible = 'off';
else
 clf(imFig); % Clear figure
 imFig.Visible = 'off';
end

% Setup Spectrum viewer
spectrumScope = spectrumAnalyzer(...
 SpectrumType='power-density', ...
 Title='Received Baseband WLAN Signal Spectrum', ...
 YLabel='Power spectral density', ...

10 Software-Defined Radio

10-4

 Position=[69 376 800 450]);

% Setup the constellation diagram viewer for equalized WLAN symbols
refQAM = wlanReferenceSymbols('64QAM');
constellation = comm.ConstellationDiagram(...
 Title='Equalized WLAN Symbols',...
 ShowReferenceConstellation=true,...
 ReferenceConstellation=refQAM,...
 Position=[878 376 460 460]);

Transmitter Design

These steps describe the general procedure of the WLAN transmitter.

1 Import an image file and convert it to a stream of decimal bytes
2 Generate a baseband WLAN signal using the WLAN Toolbox
3 Pack the data stream into multiple 802.11a packets

If using an SDR, these steps describe the setup of the SDR transmitter.

1 Prepare the baseband signal for transmission using the SDR hardware
2 Send the baseband data to the SDR hardware for upsampling and continuous transmission at the

desired center frequency

Prepare Image File

Read data from the image file, scale it for transmission, and convert it to a stream of decimal bytes.
The scaling of the image reduces the quality by decreasing the size of the binary data stream.

The size of the binary data stream impacts the number of WLAN packets required for the
transmission of the image data. The number of WLAN packets generated for transmission depends on
these factors.

1 The image scaling, set when importing the image file
2 The length of the data carried in a packet, specified by the msduLength variable
3 The modulation and coding scheme (MCS) value of the transmitted packet

The combination of the scaling factor and MSDU length determines the number of WLAN radio
packets required for transmission. Setting scale to 0.2 and msduLength to 2304 requires the
transmission of 11 WLAN radio packets. Increasing the scaling factor or decreasing the MSDU length
will result in the transmission of more packets.

% Input an image file and convert to binary stream

fileTx = ; % Image file name
fData = imread(fileTx); % Read image data from file

scale = ; % Image scaling factor
origSize = size(fData); % Original input image size
scaledSize = max(floor(scale.*origSize(1:2)),1); % Calculate new image size
heightIx = min(round(((1:scaledSize(1))-0.5)./scale+0.5),origSize(1));
widthIx = min(round(((1:scaledSize(2))-0.5)./scale+0.5),origSize(2));
fData = fData(heightIx,widthIx,:); % Resize image
imsize = size(fData); % Store new image size

 Image Transmission and Reception Using 802.11 Waveform and SDR

10-5

txImage = fData(:);

% Plot transmit image
imFig.Visible = 'on';
subplot(211);
imshow(fData);
title('Transmitted Image');
subplot(212);
title('Received image appears here...');
set(gca,'Visible','off');

set(findall(gca, 'type', 'text'), 'visible', 'on');

Fragment Transmit Data

Split the data stream (txImage) into smaller transmit units (MSDUs) of size msduLength. Then,
create an MPDU for each transmit unit using the wlanMACFrame function. Each call to this function
creates an MPDU corresponding to the given MSDU and the frame configuration object. Next, create
the frame configuration object using wlanMACFrameConfig to configure the sequence number of the
MPDU. All the MPDUs are then sequentially passed to the physical layer for transmission.

To ensure that the MSDU size of the transmission does not exceed the standard-specified maximum,
set the msduLength field to 2304 bytes. To make all MPDUs the same size, append zeros to the data
in the last MPDU.

10 Software-Defined Radio

10-6

msduLength = ; % MSDU length in bytes
numMSDUs = ceil(length(txImage)/msduLength);
padZeros = msduLength-mod(length(txImage),msduLength);
txData = [txImage;zeros(padZeros,1)];
txDataBits = double(int2bit(txData,8,false));

% Divide input data stream into fragments
bitsPerOctet = 8;
data = zeros(0,1);

for i=0:numMSDUs-1

 % Extract image data (in octets) for each MPDU
 frameBody = txData(i*msduLength+1:msduLength*(i+1),:);

 % Create MAC frame configuration object and configure sequence number
 cfgMAC = wlanMACFrameConfig(FrameType='Data',SequenceNumber=i);

 % Generate MPDU
 [psdu, lengthMPDU]= wlanMACFrame(frameBody,cfgMAC,OutputFormat='bits');

 % Concatenate PSDUs for waveform generation
 data = [data; psdu]; %#ok<AGROW>

end

Generate 802.11a Baseband WLAN Signal

Synthesize a non-HT waveform using the wlanWaveformGenerator function with a non-HT format
configuration object created by the wlanNonHTConfig object. In this example, the configuration
object has a 20 MHz bandwidth, one transmit antenna and 64QAM rate 2/3 (MCS 6).

nonHTcfg = wlanNonHTConfig; % Create packet configuration
nonHTcfg.MCS = 6; % Modulation: 64QAM Rate: 2/3
nonHTcfg.NumTransmitAntennas = 1; % Number of transmit antenna
chanBW = nonHTcfg.ChannelBandwidth;
nonHTcfg.PSDULength = lengthMPDU; % Set the PSDU length

Initialize the scrambler with a random integer for each packet.

scramblerInitialization = randi([1 127],numMSDUs,1);

Set the oversampling factor to 1.5 to generate the waveform at 30 MHz for transmission.

osf = ;

sampleRate = wlanSampleRate(nonHTcfg); % Nominal sample rate in Hz

% Generate baseband NonHT packets separated by idle time
txWaveform = wlanWaveformGenerator(data,nonHTcfg, ...
 NumPackets=numMSDUs,IdleTime=20e-6, ...
 ScramblerInitialization=scramblerInitialization,...
 OversamplingFactor=osf);

Configure SDR for Transmission

 Image Transmission and Reception Using 802.11 Waveform and SDR

10-7

If using an SDR, set the transmitter gain parameter (txGain) to reduce transmission quality and
impair the received waveform.

Create an sdrTransmitter object using the sdrtx function. Set the center frequency, sample rate,
and gain to the corresponding properties of the sdrTransmitter object. For an 802.11a signal on
channel 5 in the 2.4 GHz frequency band, the corresponding center frequency is 2.432 GHz as
defined in section 16.3.6.3 of the IEEE Std 802.11-2016.

The sdrTransmitter object uses the transmit repeat functionality to transmit the baseband WLAN
waveform in a loop from the double data rate (DDR) memory on the SDR.

if strcmpi(channel,"OverTheAir")

 % Transmitter properties
 sdrTransmitter = sdrtx(deviceName);
 sdrTransmitter.BasebandSampleRate = sampleRate*osf;
 sdrTransmitter.CenterFrequency = wlanChannelFrequency(channelNumber,frequencyBand);
 sdrTransmitter.Gain = txGain;

 % Pass the SDR I/O directly to host skipping FPGA on Zynq Radio or USRP
 % Embedded Series Radio
 if ~strcmpi(deviceName,"Pluto")
 sdrTransmitter.ShowAdvancedProperties = true;
 sdrTransmitter.BypassUserLogic = true;
 end

 fprintf('\nGenerating WLAN transmit waveform:\n')

 % Scale the normalized signal to avoid saturation of RF stages
 powerScaleFactor = 0.8;
 txWaveform = txWaveform.*(1/max(abs(txWaveform))*powerScaleFactor);

 % Transmit RF waveform
 transmitRepeat(sdrTransmitter,txWaveform);
end

The transmitRepeat function transfers the baseband WLAN packets with idle time to the SDR, and
stores the signal samples in hardware memory. The example then transmits the waveform
continuously over the air until the release of the transmit object.

Receiver Design

The steps listed below describe the general structure of the WLAN receiver.

1 If using SDR hardware, capture multiple packets of the transmitted WLAN signal
2 Detect a packet
3 Coarse carrier frequency offset is estimated and corrected
4 Fine timing synchronization is established. The L-STF, L-LTF and L-SIG samples are provided for

fine timing to allow to adjust the packet detection at the start or end of the L-STF
5 Fine carrier frequency offset is estimated and corrected
6 Perform a channel estimation for the received signal using the L-LTF
7 Detect the format of the packet

10 Software-Defined Radio

10-8

8 Decode the L-SIG field to recover the MCS value and the length of the data portion
9 Decode the data field to obtain the transmitted data within each packet
10 Decode the received PSDU and check if the frame check sequence (FCS) passed for the PSDU
11 Order the decoded MSDUs based on the SequenceNumber property in the recovered MAC frame

configuration object
12 Combine the decoded MSDUs from all the transmitted packets to form the received image

This example plots the power spectral density (PSD) of the received waveform, and shows
visualizations of the equalized data symbols and the received image.

Receiver Setup

If using an SDR, create an sdrReceiver object using the sdrrx function. Set the center frequency,
sample rate, and output data type to the corresponding properties of the sdrReceiver object.

Otherwise, apply gaussian noise to the txWaveform using the awgn function or pass the
txWaveform straight through to receiver processing.

if strcmpi(channel,"OverTheAir")

 sdrReceiver = sdrrx(deviceName);
 sdrReceiver.BasebandSampleRate = sdrTransmitter.BasebandSampleRate;
 sdrReceiver.CenterFrequency = sdrTransmitter.CenterFrequency;
 sdrReceiver.OutputDataType = 'double';
 sdrReceiver.GainSource = 'Manual';
 sdrReceiver.Gain = rxGain;

 if ~strcmpi(deviceName,"Pluto")
 sdrReceiver.ShowAdvancedProperties = true;
 sdrReceiver.BypassUserLogic = true;
 end

 % Configure the capture length equivalent to twice the length of the
 % transmitted signal, this is to ensure that PSDUs are received in order.
 % On reception the duplicate MAC fragments are removed.
 sdrReceiver.SamplesPerFrame = 2*length(txWaveform);
 fprintf('\nStarting a new RF capture.\n')

 rxWaveform = capture(sdrReceiver,sdrReceiver.SamplesPerFrame,'Samples');
elseif strcmpi(channel,"GaussianNoise")
 rxWaveform = awgn(txWaveform,SNR,'measured');
else % No Impairments
 rxWaveform = txWaveform;
end

Show the power spectral density of the received waveform.

spectrumScope.SampleRate = sampleRate*osf;
spectrumScope(rxWaveform);
release(spectrumScope);

 Image Transmission and Reception Using 802.11 Waveform and SDR

10-9

Receiver Processing

Design a rate conversion filter for resampling the waveform to the nominal baseband rate for receiver
processing using the designMultirateFIR function.

aStop = 40; % Stopband attenuation
ofdmInfo = wlanNonHTOFDMInfo('NonHT-Data',nonHTcfg); % OFDM parameters
SCS = sampleRate/ofdmInfo.FFTLength; % Subcarrier spacing
txbw = max(abs(ofdmInfo.ActiveFrequencyIndices))*2*SCS; % Occupied bandwidth
[L,M] = rat(1/osf);
maxLM = max([L M]);
R = (sampleRate-txbw)/sampleRate;
TW = 2*R/maxLM; % Transition width
b = designMultirateFIR(L,M,TW,aStop);

Resample the oversampled waveform back to 20 MHz for processing using the
dsp.FIRRateConverter System object and the filter designed above.

firrc = dsp.FIRRateConverter(L,M,b);
rxWaveform = firrc(rxWaveform);

If using an SDR, the SDR continuously transmits the 802.11 waveform over-the-air in a loop. The first
packet received by the sdrReceiver may not be the first transmitted packet. This means that the
packets may be decoded out of sequence. To enable the received packets to be recombined in the
correct order, their sequence number must be determined. The wlanMPDUDecode function decodes
the MPDU from the decoded PSDU bits of each packet and outputs the MSDU as well as the
recovered MAC frame configuration object wlanMACFrameConfig. The SequenceNumber property
in the recovered MAC frame configuration object can be used for ordering the MSDUs in the
transmitted sequence.

10 Software-Defined Radio

10-10

To display each packet's decoded L-SIG contents, the EVM measurements, and sequence number,
check the displayFlag box.

displayFlag = ;

Set up required variables for receiver processing.

rxWaveformLen = size(rxWaveform,1);
searchOffset = 0; % Offset from start of the waveform in samples

Get the required field indices within a PSDU.

ind = wlanFieldIndices(nonHTcfg);
Ns = ind.LSIG(2)-ind.LSIG(1)+1; % Number of samples in an OFDM symbol

% Minimum packet length is 10 OFDM symbols
lstfLen = double(ind.LSTF(2)); % Number of samples in L-STF
minPktLen = lstfLen*5;
pktInd = 1;
fineTimingOffset = [];
packetSeq = [];
rxBit = [];

% Perform EVM calculation
evmCalculator = comm.EVM(AveragingDimensions=[1 2 3]);
evmCalculator.MaximumEVMOutputPort = true;

Use a while loop to process the received out-of-order packets.

while (searchOffset+minPktLen)<=rxWaveformLen
 % Packet detect
 pktOffset = wlanPacketDetect(rxWaveform,chanBW,searchOffset,0.5);

 % Adjust packet offset
 pktOffset = searchOffset+pktOffset;
 if isempty(pktOffset) || (pktOffset+double(ind.LSIG(2))>rxWaveformLen)
 if pktInd==1
 disp('** No packet detected **');
 end
 break;
 end

 % Extract non-HT fields and perform coarse frequency offset correction
 % to allow for reliable symbol timing
 nonHT = rxWaveform(pktOffset+(ind.LSTF(1):ind.LSIG(2)),:);
 coarseFreqOffset = wlanCoarseCFOEstimate(nonHT,chanBW);
 nonHT = frequencyOffset(nonHT,sampleRate,-coarseFreqOffset);

 % Symbol timing synchronization
 fineTimingOffset = wlanSymbolTimingEstimate(nonHT,chanBW);

 % Adjust packet offset
 pktOffset = pktOffset+fineTimingOffset;

 % Timing synchronization complete: Packet detected and synchronized
 % Extract the non-HT preamble field after synchronization and
 % perform frequency correction

 Image Transmission and Reception Using 802.11 Waveform and SDR

10-11

 if (pktOffset<0) || ((pktOffset+minPktLen)>rxWaveformLen)
 searchOffset = pktOffset+1.5*lstfLen;
 continue;
 end
 fprintf('\nPacket-%d detected at index %d\n',pktInd,pktOffset+1);

 % Extract first 7 OFDM symbols worth of data for format detection and
 % L-SIG decoding
 nonHT = rxWaveform(pktOffset+(1:7*Ns),:);
 nonHT = frequencyOffset(nonHT,sampleRate,-coarseFreqOffset);

 % Perform fine frequency offset correction on the synchronized and
 % coarse corrected preamble fields
 lltf = nonHT(ind.LLTF(1):ind.LLTF(2),:); % Extract L-LTF
 fineFreqOffset = wlanFineCFOEstimate(lltf,chanBW);
 nonHT = frequencyOffset(nonHT,sampleRate,-fineFreqOffset);
 cfoCorrection = coarseFreqOffset+fineFreqOffset; % Total CFO

 % Channel estimation using L-LTF
 lltf = nonHT(ind.LLTF(1):ind.LLTF(2),:);
 demodLLTF = wlanLLTFDemodulate(lltf,chanBW);
 chanEstLLTF = wlanLLTFChannelEstimate(demodLLTF,chanBW);

 % Noise estimation
 noiseVarNonHT = wlanLLTFNoiseEstimate(demodLLTF);

 % Packet format detection using the 3 OFDM symbols immediately
 % following the L-LTF
 format = wlanFormatDetect(nonHT(ind.LLTF(2)+(1:3*Ns),:), ...
 chanEstLLTF,noiseVarNonHT,chanBW);
 disp([' ' format ' format detected']);
 if ~strcmp(format,'Non-HT')
 fprintf(' A format other than Non-HT has been detected\n');
 searchOffset = pktOffset+1.5*lstfLen;
 continue;
 end

 % Recover L-SIG field bits
 [recLSIGBits,failCheck] = wlanLSIGRecover(...
 nonHT(ind.LSIG(1):ind.LSIG(2),:), ...
 chanEstLLTF,noiseVarNonHT,chanBW);

 if failCheck
 fprintf(' L-SIG check fail \n');
 searchOffset = pktOffset+1.5*lstfLen;
 continue;
 else
 fprintf(' L-SIG check pass \n');
 end

 % Retrieve packet parameters based on decoded L-SIG
 [lsigMCS,lsigLen,rxSamples] = helperInterpretLSIG(recLSIGBits,sampleRate);

 if (rxSamples+pktOffset)>length(rxWaveform)
 disp('** Not enough samples to decode packet **');
 break;
 end

10 Software-Defined Radio

10-12

 % Apply CFO correction to the entire packet
 rxWaveform(pktOffset+(1:rxSamples),:) = frequencyOffset(...
 rxWaveform(pktOffset+(1:rxSamples),:),sampleRate,-cfoCorrection);

 % Create a receive Non-HT config object
 rxNonHTcfg = wlanNonHTConfig;
 rxNonHTcfg.MCS = lsigMCS;
 rxNonHTcfg.PSDULength = lsigLen;

 % Get the data field indices within a PPDU
 indNonHTData = wlanFieldIndices(rxNonHTcfg,'NonHT-Data');

 % Recover PSDU bits using transmitted packet parameters and channel
 % estimates from L-LTF
 [rxPSDU,eqSym] = wlanNonHTDataRecover(rxWaveform(pktOffset+...
 (indNonHTData(1):indNonHTData(2)),:), ...
 chanEstLLTF,noiseVarNonHT,rxNonHTcfg);

 constellation(reshape(eqSym,[],1)); % Current constellation
 release(constellation);

 refSym = wlanClosestReferenceSymbol(eqSym,rxNonHTcfg);
 [evm.RMS,evm.Peak] = evmCalculator(refSym,eqSym);

 % Decode the MPDU and extract MSDU
 [cfgMACRx,msduList{pktInd},status] = wlanMPDUDecode(rxPSDU,rxNonHTcfg); %#ok<*SAGROW>

 if strcmp(status,'Success')
 disp(' MAC FCS check pass');

 % Store sequencing information
 packetSeq(pktInd) = cfgMACRx.SequenceNumber;

 % Convert MSDU to a binary data stream
 rxBit{pktInd} = int2bit(hex2dec(cell2mat(msduList{pktInd})),8,false);

 else % Decoding failed
 if strcmp(status,'FCSFailed')
 % FCS failed
 disp(' MAC FCS check fail');
 else
 % FCS passed but encountered other decoding failures
 disp(' MAC FCS check pass');
 end

 % Since there are no retransmissions modeled in this example, we
 % extract the image data (MSDU) and sequence number from the MPDU,
 % even though FCS check fails.

 % Remove header and FCS. Extract the MSDU.
 macHeaderBitsLength = 24*bitsPerOctet;
 fcsBitsLength = 4*bitsPerOctet;
 msduList{pktInd} = rxPSDU(macHeaderBitsLength+1:end-fcsBitsLength);

 % Extract and store sequence number
 sequenceNumStartIndex = 23*bitsPerOctet+1;
 sequenceNumEndIndex = 25*bitsPerOctet-4;
 conversionLength = sequenceNumEndIndex-sequenceNumStartIndex+1;

 Image Transmission and Reception Using 802.11 Waveform and SDR

10-13

 packetSeq(pktInd) = bit2int(rxPSDU(sequenceNumStartIndex:sequenceNumEndIndex),conversionLength,false);

 % MSDU binary data stream
 rxBit{pktInd} = double(msduList{pktInd});
 end

 % Display decoded information
 if displayFlag
 fprintf(' Estimated CFO: %5.1f Hz\n\n',cfoCorrection); %#ok<*UNRCH>

 disp(' Decoded L-SIG contents: ');
 fprintf(' MCS: %d\n',lsigMCS);
 fprintf(' Length: %d\n',lsigLen);
 fprintf(' Number of samples in packet: %d\n\n',rxSamples);

 fprintf(' EVM:\n');
 fprintf(' EVM peak: %0.3f%% EVM RMS: %0.3f%%\n\n', ...
 evm.Peak,evm.RMS);

 fprintf(' Decoded MAC Sequence Control field contents:\n');
 fprintf(' Sequence number: %d\n\n',packetSeq(pktInd));
 end

 % Update search index
 searchOffset = pktOffset+double(indNonHTData(2));

 % Finish processing when a duplicate packet is detected. The
 % recovered data includes bits from duplicate frame
 % Remove the data bits from the duplicate frame
 if length(unique(packetSeq)) < length(packetSeq)
 rxBit = rxBit(1:length(unique(packetSeq)));
 packetSeq = packetSeq(1:length(unique(packetSeq)));
 break
 end

 pktInd = pktInd+1;
end

Packet-1 detected at index 7

 Non-HT format detected

 L-SIG check pass

 MAC FCS check pass

Packet-2 detected at index 8647

 Non-HT format detected

 L-SIG check pass

 MAC FCS check pass

Packet-3 detected at index 17287

 Non-HT format detected

 L-SIG check pass

10 Software-Defined Radio

10-14

 MAC FCS check pass

Packet-4 detected at index 25927

 Non-HT format detected

 L-SIG check pass

 MAC FCS check pass

Packet-5 detected at index 34567

 Non-HT format detected

 L-SIG check pass

 MAC FCS check pass

Packet-6 detected at index 43207

 Non-HT format detected

 L-SIG check pass

 MAC FCS check pass

Packet-7 detected at index 51847

 Non-HT format detected

 L-SIG check pass

 MAC FCS check pass

Packet-8 detected at index 60487

 Non-HT format detected

 L-SIG check pass

 MAC FCS check pass

Packet-9 detected at index 69127

 Non-HT format detected

 L-SIG check pass

 MAC FCS check pass

Packet-10 detected at index 77767

 Non-HT format detected

 L-SIG check pass

 MAC FCS check pass

Packet-11 detected at index 86407

 Non-HT format detected

 L-SIG check pass

 Image Transmission and Reception Using 802.11 Waveform and SDR

10-15

 MAC FCS check pass

If using an SDR, release the sdrTransmitter and sdrReceiver objects to stop the continuous
transmission of the 802.11 waveform and to allow for any modification of the SDR object properties.

if strcmpi(channel,"OverTheAir")
 release(sdrTransmitter);
 release(sdrReceiver);
end

Reconstruct Image

Reconstruct the image using the received MAC frames.

if ~(isempty(fineTimingOffset) || isempty(pktOffset))

 % Convert decoded bits from cell array to column vector
 rxData = cat(1,rxBit{:});
 % Remove any extra bits
 rxData = rxData(1:end-(mod(length(rxData),msduLength*8)));
 % Reshape such that each column length has bits equal to msduLength*8
 rxData = reshape(rxData,msduLength*8,[]);

 % Remove duplicate packets if any. Duplicate packets are located at the
 % end of rxData

10 Software-Defined Radio

10-16

 if length(packetSeq)>numMSDUs
 numDupPackets = size(rxData,2)-numMSDUs;
 rxData = rxData(:,1:end-numDupPackets);
 end

 % Initialize variables for while loop
 startSeq = [];
 i=-1;

 % Only execute this if one of the packet sequence values have been decoded
 % accurately
 if any(packetSeq<numMSDUs)
 while isempty(startSeq)
 % This searches for a known packetSeq value
 i = i + 1;
 startSeq = find(packetSeq==i);
 end
 % Circularly shift data so that received packets are in order for image reconstruction. It
 % is assumed that all packets following the starting packet are received in
 % order as this is how the image is transmitted.
 rxData = circshift(rxData,[0 -(startSeq(1)-i-1)]); % Order MAC fragments

 % Perform bit error rate (BER) calculation on reordered data
 bitErrorRate = comm.ErrorRate;
 err = bitErrorRate(double(rxData(:)), ...
 txDataBits(1:length(reshape(rxData,[],1))));
 fprintf(' \nBit Error Rate (BER):\n');
 fprintf(' Bit Error Rate (BER) = %0.5f\n',err(1));
 fprintf(' Number of bit errors = %d\n',err(2));
 fprintf(' Number of transmitted bits = %d\n\n',length(txDataBits));
 end

 decData = bit2int(reshape(rxData(:),8,[]),8,false)';

 % Append NaNs to fill any missing image data
 if length(decData)<length(txImage)
 numMissingData = length(txImage)-length(decData);
 decData = [decData;NaN(numMissingData,1)];
 else
 decData = decData(1:length(txImage));
 end

 % Recreate image from received data
 fprintf('\nConstructing image from received data.\n');
 receivedImage = uint8(reshape(decData,imsize));
 % Plot received image
 if exist('imFig','var') && ishandle(imFig) % If Tx figure is open
 figure(imFig); subplot(212);
 else
 figure; subplot(212);
 end
 imshow(receivedImage);
 title(sprintf('Received Image'));
end

Bit Error Rate (BER):

 Image Transmission and Reception Using 802.11 Waveform and SDR

10-17

 Bit Error Rate (BER) = 0.00000

 Number of bit errors = 0

 Number of transmitted bits = 202752

Constructing image from received data.

Further Exploration

• If using an SDR, modify txGain on page 10-4 or rxGain on page 10-4 to observe the difference in
the EVM and BER after signal reception and processing. You may see errors in the displayed,
received image.

• If running the example without an SDR, modify SNR on page 10-9 to observe the difference in the
EVM and BER after signal reception and processing.

• Increase the scaling factor (scale on page 10-5) to improve the quality of the received image by
generating more transmit bits. This also increases the number of transmitted PPDUs.

• Decrease MSDU size (msduLength on page 10-6) to decrease the number of bits transmitted per
packet and observe the differences in EVM and BER when a signal is received with a lower SNR.

SDR Troubleshooting

• ADALM-PLUTO Radio “Common Problems and Fixes” (Communications Toolbox Support Package
for Analog Devices ADALM-Pluto Radio)

• USRP Embedded Series Radio “Common Problems and Fixes” (Communications Toolbox Support
Package for USRP Embedded Series Radio)

10 Software-Defined Radio

10-18

• Xilinx Zynq-Based Radio “Common Problems and Fixes” (Communications Toolbox Support
Package for Xilinx Zynq-Based Radio)

 Image Transmission and Reception Using 802.11 Waveform and SDR

10-19

OFDM Wi-Fi Scanner Using SDR Preamble Detection

This example shows how to retrieve information about Wi-Fi® networks using a software-defined
radio (SDR) and preamble detection. The example scans over the 5 GHz channels and uses an SDR
preamble detector to detect and capture orthogonal frequency-division multiplexing (OFDM) packets
from the air. The example then decodes the OFDM packets to determine which packets are access
point (AP) beacons. The AP beacon information includes the service set identifier (SSID), media
access control (MAC) address (also known as the basic SSID, or BSSID), AP channel bandwidth, and
802.11 standard used by the AP.

Introduction

This example scans through a set of Wi-Fi channels to detect AP beacons that are transmitted on 20
MHz subchannels. The scanning procedure uses a preamble detector on an NI™ USRP™ radio.

The scanning procedure comprises of these steps.

• Configure the preambleDetector (Wireless Testbench) object with a preamble that is generated
from the legacy long training field (L-LTF).

• Set the frequency band and channels for the preamble detector to scan.
• Scan each specified channel and with each successful detection of an OFDM packet, capture a

waveform for a set duration.
• Process the waveform in MATLAB® by searching for beacon frames in the captured waveform and

extracting relevant information from each successfully decoded beacon frame.
• Display key information about the detected APs.

Set Up Radio

Call the radioConfigurations function. The function returns all available radio setup
configurations that you saved using the Radio Setup wizard. For more information, see “Connect and
Set Up NI USRP Radios” (Wireless Testbench).

savedRadioConfigurations = radioConfigurations;

To update the dropdown menu with your saved radio setup configuration names, click Update. Then
select the radio to use with this example.

savedRadioConfigurationNames = [string({savedRadioConfigurations.Name})];

radio = ;

Configure Preamble Detector

Create a preamble detector object with the specified radio. Because the object requires exclusive
access to radio hardware resources, before running this example for the first time, clear any other
object associated with the specified radio. In subsequent runs, to speed up the execution time of the
example, reuse your new workspace object.

if ~exist("pd","var")
 pd = preambleDetector(radio);
end

10 Software-Defined Radio

10-20

To update the dropdown menu with the antennas available for capture on your radio, call the
hCaptureAntennas helper function. Then select the antenna to use with this example.

captureAntennaSelection = hCaptureAntennas(radio);

pd.Antennas = ;

To increase the capture sample rate to 40 MHz, specify an oversampling factor of 2.

osf = ;
pd.SampleRate = 20e6*osf;
pd.CaptureDataType = "double";
pd.ThresholdMethod = "adaptive";

Configure Preamble For Radio

The 802.11 standard requires that all Wi-Fi APs must transmit OFDM beacons using non-high
throughput (non-HT) packets over a 20 MHz bandwidth. Therefore, generate a 20 MHz L-LTF
waveform and use one long training symbol from the generated waveform as the preamble to detect
WLAN OFDM packets.

cbw = "CBW20";
cfg = wlanNonHTConfig(ChannelBandwidth=cbw);
lltf = wlanLLTF(cfg,OversamplingFactor=osf);

Extract the first long training symbol from the L-LTF waveform.

cyclicPrefixLength = 1.6e-6*pd.SampleRate;
trainingSymbolLength = 3.2e-6*pd.SampleRate;
preamble = lltf(cyclicPrefixLength+1:cyclicPrefixLength+trainingSymbolLength);

Because the preamble detector requires the preamble to be between –1 and 1, normalize and set the
preamble.

preamble = preamble/sqrt(sum(abs(preamble).^2));
pd.Preamble = preamble;

To capture the entire first non-HT packet, you must set the trigger offset to a negative value. Since
you created a matched filter based on the long training symbol in the L-LTF waveform, the offset is at
least one legacy short training field (L-STF), one L-LTF cyclic prefix, and one long training symbol.

lstfLength = 8e-6*pd.SampleRate;
pd.TriggerOffset = -(lstfLength + cyclicPrefixLength + trainingSymbolLength + 5);

Tune Preamble Detector

Configure the adaptive threshold gain, the adaptive threshold offset, and the radio gain values of the
preamble detector for the local environment. Configuring these values requires manual tuning by
exploring the trigger points provided by the plotThreshold function. For more information on
tuning these values, see “Triggered Capture Using Preamble Detection” (Wireless Testbench).

For tuning the preamble detector, specify a channel in the 5 GHz band with a known OFDM packet.

In the 5 GHz band, the valid channel numbers are 1–200. However, the valid 20 MHz control channels
for APs that use the 5 GHz band are 32, 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120,
124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173, 177.

 OFDM Wi-Fi Scanner Using SDR Preamble Detection

10-21

band = 5;

channel = ;

pd.CenterFrequency = wlanChannelFrequency(channel,band);

Adjust these values for tuning the preamble detector.

pd.AdaptiveThresholdGain = ;

pd.AdaptiveThresholdOffset = ;

pd.RadioGain = ;

Plot the filter output power, adaptive threshold, and trigger points of the reconfigured preamble
detector. The generated figure contains two trigger points for each OFDM packet. Each trigger point
corresponds to a long training symbol.

When you generate a plotThreshold figure, if you do not have at least two trigger points for each
OFDM packet, readjust the adaptive threshold gain, the adaptive threshold offset, and the radio gain
until there are at least two trigger points per OFDM packet.

captureDuration = milliseconds(120);
plotThreshold(pd,captureDuration);

Inspect the trigger points by zooming in along the x-axis of the plot. For example, this figure shows a
zoomed-in view of an OFDM packet with the trigger points on the correlation peaks.

10 Software-Defined Radio

10-22

Scan Wi-Fi Channels

Specify Scanning Region

Specify the channels in the 5 GHz band for the SDR to scan.

band = 5;

channels = ;

Generate the center frequencies associated with the selected channels and band values.

centerFrequencies = wlanChannelFrequency(channels,band);

Receiver Design

This diagram shows an overview of the receiver for scanning the selected channels and frequency
band.

 OFDM Wi-Fi Scanner Using SDR Preamble Detection

10-23

These steps provide further information on the diagram.

1 Set the center frequency of the preamble detector, then initialize the detection and capture of a
waveform for a set duration.

2 Check if the preamble detector detects an OFDM packet.
3 Determine and apply frequency and timing corrections on the waveform, then attempt to recover

the legacy signal (L-SIG) field bits.
4 Check that the packet format is non-HT.
5 From the recovered L-SIG, extract the modulation and coding scheme (MCS) and the length of

the PLCP service data unit (PSDU). Then recover the non-HT data and subsequently decode the
MAC protocol data unit (MPDU).

6 Using the recovered MAC frame configuration, check if the non-HT packet is a beacon.
7 Recover the SSID, BSSID, vendor of the AP, SNR, primary 20 MHz channel, current channel

center frequency index, supported channel width, frequency band, and wireless standard used by
the AP.

8 Check if the waveform contains another packet that you can decode.

Initialize Variables

When you call the capture function to detect and capture a signal, you must specify the length of
the capture and the signal detection timeout. Since beacons transmit every 100 ms, set
captureLength to milliseconds(100) and timeout to milliseconds(100).

captureLength = ;

timeout = ;

Create a structure (APs) for storing this information for each successfully decoded beacon.

• SSID
• BSSID
• Vendor of AP
• Signal-to-noise ratio (SNR)
• Primary 20 MHz channel
• Current channel center frequency
• Channel width
• Frequency band
• Operating mode supported by the AP
• MAC frame configuration
• Waveform in which the beacon exists
• Index value at which the non-HT beacon packet begins in the captured waveform

APs = struct(...
 "SSID",[],"BSSID",[],"Vendor",[],"SNR_dB",[],"Beacon_Channel",[], ...
 "Operating_Channel",[],"Channel_Width_MHz",[],"Band",[],"Mode",[], ...
 "MAC_Config",wlanMACFrameConfig,"Waveform",[],"Offset",[]);

10 Software-Defined Radio

10-24

To determine the hardware manufacturer of the AP, select the retrieveVendorInfo box. Selecting
the retrieveVendorInfo box downloads the organizationally unique identifier (OUI) CSV file from
the IEEE® Registration Authority website for vendor AP identification.

retrieveVendorInfo = ;
counter = 1;
ind = wlanFieldIndices(cfg);

% Begin scanning and decoding for specified channels.
for i = 1:length(centerFrequencies)

 pd.CenterFrequency = centerFrequencies(i);

 fprintf("Scanning channel %d on band %.1f.\n",channels(i),band);
 [capturedData, ~, ~, status] = capture(pd, captureLength, timeout);

 if ~status
 % If no non-HT packet is decoded, go to next channel.
 fprintf("No non-HT packet detected on channel %d in band %.1f.\n",channels(i),band);
 continue;
 else
 fprintf("Non-HT packet detected on channel %d in band %.1f.\n",channels(i),band)
 end
 % Resample the captured data to 20 MHz for beacon processing.
 capturedData = resample(capturedData,1,osf);
 searchOffset = 0;
 while searchOffset<length(capturedData)

 % recoverPreamble detects a packet and performs analysis of the non-HT preamble.
 [preambleStatus,res] = recoverPreamble(capturedData,cbw,searchOffset);

 if matches(preambleStatus,"No packet detected")
 break;
 end

 % Retrieve synchronized data and scale it with LSTF power as done
 % in the recoverPreamble function.
 syncData = capturedData(res.PacketOffset+1:end)./sqrt(res.LSTFPower);
 syncData = frequencyOffset(syncData,pd.SampleRate/osf,-res.CFOEstimate);

 % Need only 4 OFDM symbols (LSIG + 3 more symbols) following LLTF
 % for format detection
 fmtDetect = syncData(ind.LSIG(1):(ind.LSIG(2)+4e-6*pd.SampleRate/osf*3));

 [LSIGBits, failcheck] = wlanLSIGRecover(fmtDetect(1:4e-6*pd.SampleRate/osf*1), ...
 res.ChanEstNonHT,res.NoiseEstNonHT,cbw);

 if ~failcheck
 format = wlanFormatDetect(fmtDetect,res.ChanEstNonHT,res.NoiseEstNonHT,cbw);
 if matches(format,"Non-HT")

 % Extract MCS from first 3 bits of L-SIG.
 rate = double(bit2int(LSIGBits(1:3),3));
 if rate <= 1
 cfg.MCS = rate + 6;
 else
 cfg.MCS = mod(rate,6);

 OFDM Wi-Fi Scanner Using SDR Preamble Detection

10-25

 end

 % Determine PSDU length from L-SIG.
 cfg.PSDULength = double(bit2int(LSIGBits(6:17),12,0));
 ind.NonHTData = wlanFieldIndices(cfg,"NonHT-Data");

 if double(ind.NonHTData(2)-ind.NonHTData(1))> ...
 length(syncData(ind.NonHTData(1):end))
 % Exit while loop as full packet not captured.
 break;
 end

 nonHTData = syncData(ind.NonHTData(1):ind.NonHTData(2));
 bitsData = wlanNonHTDataRecover(nonHTData,res.ChanEstNonHT, ...
 res.NoiseEstNonHT,cfg);
 [cfgMAC, ~, decodeStatus] = wlanMPDUDecode(bitsData,cfg, ...
 SuppressWarnings=true);

 % Extract information about channel from the beacon.
 if ~decodeStatus && matches(cfgMAC.FrameType,"Beacon")
 fprintf("Beacon detected on channel %d in band %.1f.\n",channels(i),band);

 % Populate the table with information about the beacon.
 if isempty(cfgMAC.ManagementConfig.SSID)
 APs(counter).SSID = "Hidden";
 else
 APs(counter).SSID = string(cfgMAC.ManagementConfig.SSID);
 end

 APs(counter).BSSID = string(cfgMAC.Address3);
 if retrieveVendorInfo
 APs(counter).Vendor = determineVendor(cfgMAC.Address3);
 else
 APs(counter).Vendor = "Skipped"; %#ok<UNRCH>
 end
 [APs(counter).Mode, APs(counter).Channel_Width_MHz, operatingChannel] = ...
 determineMode(cfgMAC.ManagementConfig.InformationElements);

 if isempty(operatingChannel)
 % Default to scanning channel if operating channel
 % cannot be determined.
 operatingChannel = channels(i);
 end

 APs(counter).Beacon_Channel = channels(i);
 APs(counter).Operating_Channel = operatingChannel;
 APs(counter).SNR_dB = res.LLTFSNR;
 APs(counter).MAC_Config = cfgMAC;
 APs(counter).Offset = res.PacketOffset;
 APs(counter).Waveform = capturedData;
 counter = counter + 1;
 end
 % Shift packet search offset for next iteration of while loop.
 searchOffset = res.PacketOffset + double(ind.NonHTData(2));
 else
 % Packet is NOT non-HT; shift packet search offset by 10 OFDM symbols (minimum
 % packet length of non-HT) for next iteration of while loop.
 searchOffset = res.PacketOffset + 4e-6*pd.SampleRate/osf*10;

10 Software-Defined Radio

10-26

 end
 else
 % L-SIG recovery failed; shift packet search offset by 10 OFDM symbols (minimum
 % packet length of non-HT) for next iteration of while loop.
 searchOffset = res.PacketOffset + 4e-6*pd.SampleRate/osf*10;
 end
 end
end

Scanning channel 32 on band 5.0.

No non-HT packet detected on channel 32 in band 5.0.

Scanning channel 36 on band 5.0.

No non-HT packet detected on channel 36 in band 5.0.

Scanning channel 40 on band 5.0.

Non-HT packet detected on channel 40 in band 5.0.

Scanning channel 44 on band 5.0.

No non-HT packet detected on channel 44 in band 5.0.

Scanning channel 48 on band 5.0.

Non-HT packet detected on channel 48 in band 5.0.

Beacon detected on channel 48 in band 5.0.
Beacon detected on channel 48 in band 5.0.
Beacon detected on channel 48 in band 5.0.
Beacon detected on channel 48 in band 5.0.
Beacon detected on channel 48 in band 5.0.

Scanning channel 52 on band 5.0.

No non-HT packet detected on channel 52 in band 5.0.

Scanning channel 56 on band 5.0.

No non-HT packet detected on channel 56 in band 5.0.

Scanning channel 60 on band 5.0.

Non-HT packet detected on channel 60 in band 5.0.

Beacon detected on channel 60 in band 5.0.
Beacon detected on channel 60 in band 5.0.
Beacon detected on channel 60 in band 5.0.

Scanning channel 64 on band 5.0.

No non-HT packet detected on channel 64 in band 5.0.

Scanning channel 100 on band 5.0.

Non-HT packet detected on channel 100 in band 5.0.

Beacon detected on channel 100 in band 5.0.
Beacon detected on channel 100 in band 5.0.
Beacon detected on channel 100 in band 5.0.

 OFDM Wi-Fi Scanner Using SDR Preamble Detection

10-27

Beacon detected on channel 100 in band 5.0.
Beacon detected on channel 100 in band 5.0.

Scanning channel 104 on band 5.0.

No non-HT packet detected on channel 104 in band 5.0.

Scanning channel 108 on band 5.0.

No non-HT packet detected on channel 108 in band 5.0.

Scanning channel 112 on band 5.0.

Non-HT packet detected on channel 112 in band 5.0.

Scanning channel 116 on band 5.0.

No non-HT packet detected on channel 116 in band 5.0.

Scanning channel 120 on band 5.0.

Non-HT packet detected on channel 120 in band 5.0.

Beacon detected on channel 120 in band 5.0.
Beacon detected on channel 120 in band 5.0.
Beacon detected on channel 120 in band 5.0.
Beacon detected on channel 120 in band 5.0.

Scanning channel 124 on band 5.0.

No non-HT packet detected on channel 124 in band 5.0.

Scanning channel 128 on band 5.0.

No non-HT packet detected on channel 128 in band 5.0.

Scanning channel 132 on band 5.0.

No non-HT packet detected on channel 132 in band 5.0.

Scanning channel 136 on band 5.0.

No non-HT packet detected on channel 136 in band 5.0.

Scanning channel 140 on band 5.0.

No non-HT packet detected on channel 140 in band 5.0.

Scanning channel 144 on band 5.0.

No non-HT packet detected on channel 144 in band 5.0.

Scanning channel 149 on band 5.0.

No non-HT packet detected on channel 149 in band 5.0.

Scanning channel 153 on band 5.0.

No non-HT packet detected on channel 153 in band 5.0.

Scanning channel 157 on band 5.0.

No non-HT packet detected on channel 157 in band 5.0.

10 Software-Defined Radio

10-28

Scanning channel 161 on band 5.0.

No non-HT packet detected on channel 161 in band 5.0.

Scanning channel 165 on band 5.0.

No non-HT packet detected on channel 165 in band 5.0.

Scanning channel 169 on band 5.0.

No non-HT packet detected on channel 169 in band 5.0.

Scanning channel 173 on band 5.0.

No non-HT packet detected on channel 173 in band 5.0.

Scanning channel 177 on band 5.0.

No non-HT packet detected on channel 177 in band 5.0.

Convert the APs structure to a table and display the information specified in step 7 on page 10-24 by
using the local function generateBeaconTable.

detectedBeaconsInfo = generateBeaconTable(APs,band)

detectedBeaconsInfo=17×9 table
 SSID BSSID Vendor SNR (dB) Primary 20 MHz Channel Current Channel Center Frequency Index Channel Width (MHz) Band Mode
 _____________________ ______________ ____________________________ ________ ______________________ ______________________________________ ___________________ ____ __________

 "ClassForKids Secure" "9A1898BEB142" "Unknown" 13.532 48 42 "80" 5 "802.11ax"
 "ClassForKids Guest" "9E1898BEB142" "Unknown" 14.314 48 42 "80" 5 "802.11ax"
 "ClassForKids Music" "921898BEB142" "Unknown" 13.211 48 42 "80" 5 "802.11ax"
 "Test SSID" "961898BEB142" "Unknown" 13.671 48 42 "80" 5 "802.11ax"
 "Hidden" "A61898BEB142" "Unknown" 13.902 48 42 "80" 5 "802.11ax"
 "w-inside" "B0B867F3D9B0" "Hewlett Packard Enterprise" 12.655 60 58 "80" 5 "802.11ac"
 "w-mobile" "B0B867F3D9B1" "Hewlett Packard Enterprise" 13.278 60 58 "80" 5 "802.11ac"
 "w-guest" "B0B867F3D9B2" "Hewlett Packard Enterprise" 13.225 60 58 "80" 5 "802.11ac"
 "wlan1234_5" "04D4C451C584" "ASUSTek COMPUTER INC." 37.074 100 100 "20" 5 "802.11ax"
 "wlan1234_5" "04D4C451C584" "ASUSTek COMPUTER INC." 33.754 100 100 "20" 5 "802.11ax"
 "wlan1234_5" "04D4C451C584" "ASUSTek COMPUTER INC." 34.933 100 100 "20" 5 "802.11ax"
 "wlan1234_5" "04D4C451C584" "ASUSTek COMPUTER INC." 36.619 100 100 "20" 5 "802.11ax"
 "wlan1234_5" "04D4C451C584" "ASUSTek COMPUTER INC." 36.484 100 100 "20" 5 "802.11ax"
 "w-inside" "B0B867F6B2D0" "Hewlett Packard Enterprise" 29.415 120 122 "80" 5 "802.11ac"
 "w-mobile" "B0B867F6B2D1" "Hewlett Packard Enterprise" 29.295 120 122 "80" 5 "802.11ac"
 "w-guest" "B0B867F6B2D2" "Hewlett Packard Enterprise" 28.261 120 122 "80" 5 "802.11ac"
 ⋮

Further Exploration

• The detectedBeaconsInfo table shows only key information about the APs. To get further
information about the beacons, such as data rates supported by the AP, explore the MAC frame
configuration in the APs structure.

• If you have access to a configurable AP, change the channel width of your AP and rerun the
example to confirm the channel width.

Local Functions

These functions assist in processing the incoming beacons.

 OFDM Wi-Fi Scanner Using SDR Preamble Detection

10-29

function vendor = determineVendor(mac)
% DETERMINEVENDOR returns the vendor name of the AP by extracting the
% organizationally unique identifier (OUI) from the specified MAC address.

persistent ouis

vendor = strings(0);
try
 if isempty(ouis)
 if ~exist("oui.csv","file")
 disp("Downloading oui.csv from IEEE Registration Authority...")
 % Increase websave timeout if necessary
 options = weboptions("Timeout",5);
 websave("oui.csv","http://standards-oui.ieee.org/oui/oui.csv",options);
 end
 ouis = readtable("oui.csv",VariableNamingRule="preserve");
 end

 % Extract OUI from MAC Address.
 oui = mac(1:6);

 % Extract vendors name based on OUI.
 vendor = string(cell2mat(ouis.("Organization Name")(matches(ouis.Assignment,oui))));

catch ME
 % Rethrow caught error as warning.
 warning(ME.message+"\nTo skip the determineVendor function call, set retrieveVendorInfo to false.",[]);
end

if isempty(vendor)
 vendor = "Unknown";
end

end

function [mode,bw,operatingChannel] = determineMode(informationElements)
% DETERMINEMODE determines the 802.11 standard that the AP uses.
% The function checks for the presence of HT, VHT, and HE capability
% elements and determines the 802.11 standard that the AP uses. The element
% IDs are defined in IEEE Std 802.11-2020 and IEEE Std 802.11ax-2021.

elementIDs = cell2mat(informationElements(:,1));
IDs = elementIDs(:,1);

if any(IDs==255)
 if any(elementIDs(IDs==255,2)==35)
 % HE Packet Format
 mode = "802.11ax";
 else
 mode = "Unknown";
 end
 vhtElement = informationElements{IDs==192,2};
 htElement = informationElements{IDs==61,2};
 [bw,operatingChannel] = determineChannelWidth(htElement,vhtElement);
elseif any(IDs==191)
 % VHT Packet Format
 mode = "802.11ac";

10 Software-Defined Radio

10-30

 vhtElement = informationElements{IDs==192,2};
 htElement = informationElements{IDs==61,2};
 [bw,operatingChannel] = determineChannelWidth(htElement,vhtElement);
elseif any(IDs==45)
 % HT Packet Format
 mode = "802.11n";
 htElement = informationElements{IDs==61,2};
 [bw,operatingChannel] = determineChannelWidth(htElement);
else
 % Non-HT Packet Format
 % Exclude b as only DSSS is supported
 mode ="802.11a/g/j/p";
 bw = "Unknown";
 operatingChannel = [];
end

end

function [bw,operatingChannel] = determineChannelWidth(htElement,varargin)
% DETERMINECHANNELWIDTH returns the bandwidth of the channel from the
% beacons HT/VHT operation information elements as defined in IEEE Std 802.11-2020
% Section 9.4.2.56 and Section 9.4.2.158.

msbFirst = false;

% IEEE Std 802.11-2020 Figure 9-382 and Table 9-190 define each bit in
% htOperationInfoBits
% Convert to bits to get STA channel width value in 3rd bit.
htOperationInfoBits = int2bit(htElement(2),5*8,msbFirst);
operatingChannel = 0;

if nargin == 2
 % IEEE Std 802.11-2020 Figure 9-163 and Table 9-274 define each octet
 % in vhtElement
 vhtElement = varargin{1};

 % VHT Operation Channel Width Field
 CW = vhtElement(1);
 % Channel Center Frequency Segment 0
 CCFS0 = vhtElement(2);
 % Channel Center Frequency Segment 1
 CCFS1 = vhtElement(3);

 % IEEE Std 802.11-2020 Table 11-23 defines the logic below
 if htOperationInfoBits(3) == 0
 bw = "20";
 operatingChannel = CCFS0;
 elseif CW == 0
 % HT Operation Channel Width Field is 1
 bw = "40";
 operatingChannel = CCFS0;
 elseif CCFS1 == 0
 % HT Operation Channel Width Field is 1 and
 % VHT Operation Channel Width Field is 1
 bw = "80";
 operatingChannel = CCFS0;
 elseif abs(CCFS1 - CCFS0) == 8
 % HT Operation Channel Width Field is 1 and

 OFDM Wi-Fi Scanner Using SDR Preamble Detection

10-31

 % VHT Operation Channel Width Field is 1 and
 % CCFS1 is greater than 0
 bw = "160";
 operatingChannel = CCFS1;
 else
 % HT Operation Channel Width Field is 1 and
 % VHT Operation Channel Width Field is 1 and
 % CCFS1 is greater than 0 and
 % |CCFS1 - CCFS0| is greater than 16
 bw = "80+80";
 end
end

if operatingChannel == 0
 if htOperationInfoBits(3) == 1
 bw = "40";
 secondaryChannelOffset = bit2int(htOperationInfoBits(1:2),2,false);
 if secondaryChannelOffset == 1
 % Secondary Channel is above the primary channel.
 operatingChannel = htElement(1) + 2;
 elseif secondaryChannelOffset == 3
 % Secondary Channel is below the primary channel.
 operatingChannel = htElement(1) - 2;
 else
 warning("Could not determine operating channel.")
 end

 else
 bw = "20";
 operatingChannel = htElement(1);
 end
end

end

function tbl = generateBeaconTable(APs,band)
% GENERATEBEACONTABLE converts the access point structure to a table and
% cleans up the variable names.

tbl = struct2table(APs,"AsArray",true);
tbl.Band = repmat(band,length(tbl.SSID),1);
tbl = renamevars(tbl,["SNR_dB","Beacon_Channel","Operating_Channel","Channel_Width_MHz"], ...
 ["SNR (dB)","Primary 20 MHz Channel","Current Channel Center Frequency Index", ...
 "Channel Width (MHz)"]);
tbl = tbl(:,1:9);

end

10 Software-Defined Radio

10-32

OFDM Beacon Receiver Using Software-Defined Radio

This example shows how to retrieve information about WiFi networks on the 5 GHz band using a
software-defined radio (SDR). The example scans over the 5 GHz beacon channels and captures
waveforms for analysis within MATLAB®. The example then decodes the OFDM packets to determine
which packets are access point (AP) beacons. The AP beacon information includes the service set
identifier (SSID), media access control (MAC) address (also known as the basic SSID, or BSSID), AP
channel bandwidth, and 802.11 standard used by the AP.

Introduction

This example scans through a set of WiFi channels in the 5 GHz band to detect AP beacons that are
transmitted on 20 MHz subchannels.

The scanning procedure comprises these steps.

• Set the frequency band and channels for the SDR to capture.
• Capture a waveform for a set duration for each specified channel.
• Process the waveform in MATLAB by searching for beacon frames in the captured waveform and

extracting relevant information from each successfully decoded beacon frame.
• Display key information about the detected APs.

This example supports these SDRs for capturing waveforms in the 5 GHz band.

• ADALM-Pluto from the Communications Toolbox Support Package for Analog Devices® ADALM-
Pluto Radio

• USRP™ E310/E312 from the Communications Toolbox Support Package for USRP™ Embedded
Series Radio

• AD936x/FMCOMMS5 from the Communications Toolbox Support Package for Xilinx® Zynq®-
Based Radio

• USRP™ N200/N210/USRP2/N320/N321/B200/B210/X300/X310 from the Communications Toolbox
Support Package for USRP™ Radio

 OFDM Beacon Receiver Using Software-Defined Radio

10-33

Alternatively, if an SDR is not available for waveform capture, the example supports importing a file
with a precaptured waveform.

Example Setup

Before running the example, ensure that you have installed the appropriate support package for the
SDR that you intend to use and that you have set up the hardware.

The ReceiveOnSDR field of the rxsim structure determines whether the example receives a
waveform off the air or imports a waveform from a MAT file.

rxsim.ReceiveOnSDR = ;

Specify the file name of a precaptured waveform in the fileName variable. Confirm that the MAT file
contains these variables: capturedWaveforms, channels, radioSampleRate, and band.

fileName = "capturedBeacons.mat";

By default, the example processes waveforms that are stored in a MAT file. If using an SDR to
perform a live scan of the 5 GHz band, specify the SDR name, radio identifier, radio sample rate,
channel numbers, and other parameters. The valid channel numbers for the 5 GHz band are between
1 and 200. However, the valid 20 MHz control channels for an AP are 32, 36, 40, 44, 48, 52, 56, 60,
64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173,
and 177.

if rxsim.ReceiveOnSDR

 rxsim.SDRDeviceName = ; % SDR that is used for waveform reception

 rxsim.RadioIdentifier = ; % Value used to identify radio, for example, IP address, USB port, or serial number 30AD2D5

 rxsim.RadioSampleRate = ; % Configured for 20e6 Hz as this is beacon transmission BW

 rxsim.RadioGain = ;
 rxsim.FrequencyBand = 5;

 rxsim.ChannelNumbers = ; % Default scans all 5 GHz beacon channels

 rxsim.ReceiveAntenna = ; % Configure to work with only a single antenna

 rxsim.CaptureTime = ; % Value expected to be of type duration

 % Derived Parameters
 rxsim.CenterFrequencies = wlanChannelFrequency(rxsim.ChannelNumbers,rxsim.FrequencyBand);
 rxsim.NumSamplesToCapture = seconds(rxsim.CaptureTime)*rxsim.RadioSampleRate;

else
 rx = load(fileName);

 rxsim.ChannelNumbers = rx.channels;
 rxsim.RadioSampleRate = rx.radioSampleRate;
 rxsim.FrequencyBand = rx.band;

 % Derived Parameters
 rxsim.NumSamplesToCapture = size(rx.capturedWaveforms,1);
end
osf = rxsim.RadioSampleRate/20e6;

10 Software-Defined Radio

10-34

Set Optional Information to Display

To determine the hardware manufacturer of the AP, select the retrieveVendorInfo box. Selecting
the retrieveVendorInfo box downloads the organizationally unique identifier (OUI) CSV file from
the IEEE® Registration Authority website for vendor AP identification.

retrieveVendorInfo = ;

To display additional packet information such as payload size, code rate, and modulation for all
successfully decoded non-HT packets, select the displayAdditionalInfo box.

displayAdditionalInfo = ;

To display a spectrum and spectrogram for the captured waveform, select the displayScope box.

displayScope = ;

Scan 5 GHz Channels

Initialize SDR object

This example communicates with the radio hardware using the object pertaining to the selected
radio.

Create an SDR object by either calling sdrrx or comm.SDRuReceiver. Then, apply the parameters
set in the rxsim structure above to the properties of that object.

if rxsim.ReceiveOnSDR
 if matches(rxsim.SDRDeviceName, ["AD936x", "FMCOMMS5", "Pluto", "E3xx"])
 sdrReceiver = sdrrx(...
 rxsim.SDRDeviceName, ...
 BasebandSampleRate=rxsim.RadioSampleRate, ...
 GainSource="Manual");
 if matches(rxsim.SDRDeviceName, ["AD936x", "FMCOMMS5", "E3xx"])
 % When capturing a waveform, skip the FPGA and have the data
 % sent straight to the host
 sdrReceiver.ShowAdvancedProperties = true;
 sdrReceiver.BypassUserLogic = true;
 sdrReceiver.IPAddress = rxsim.RadioIdentifier;
 else
 sdrReceiver.RadioID = rxsim.RadioIdentifier;
 end
 else
 % For the USRP SDRs
 sdrReceiver = comm.SDRuReceiver(...
 Platform=rxsim.SDRDeviceName, ...
 EnableBurstMode=true);
 % Determine burst capture values
 % Each frame will have 100 symbols
 sdrReceiver.SamplesPerFrame = 4e-6*rxsim.RadioSampleRate*100;
 sdrReceiver.NumFramesInBurst = rxsim.NumSamplesToCapture/sdrReceiver.SamplesPerFrame;
 [sdrReceiver.MasterClockRate, sdrReceiver.DecimationFactor] = ...
 hGetUSRPRateInformation(rxsim.SDRDeviceName,rxsim.RadioSampleRate);
 if matches(rxsim.SDRDeviceName, ["B200", "B210"])
 % Change the serial number as needed for USRP B200/B210

 OFDM Beacon Receiver Using Software-Defined Radio

10-35

 sdrReceiver.SerialNum = rxsim.RadioIdentifier;
 else
 sdrReceiver.IPAddress = rxsim.RadioIdentifier;
 end
 end
 sdrReceiver.Gain = rxsim.RadioGain;
 sdrReceiver.OutputDataType = "double";
 sdrReceiver.ChannelMapping = rxsim.ReceiveAntenna;
end

Receiver Design

This diagram shows an overview of the receiver for scanning the selected channels and frequency
band and recovering beacon information.

These steps provide further information on the diagram.

1 Set the center frequency of the SDR, then initialize the capture of a waveform for a set duration.
2 Determine and apply frequency and timing corrections on the waveform, then attempt to recover

the legacy signal (L-SIG) field bits.
3 Check that the packet format is non-HT.
4 From the recovered L-SIG, extract the modulation and coding scheme (MCS) and the length of

the PLCP service data unit (PSDU). Then recover the non-HT data and subsequently decode the
MAC protocol data unit (MPDU).

5 Using the recovered MAC frame configuration, check if the non-HT packet is a beacon.
6 Recover the SSID, BSSID, vendor of the AP, SNR, primary 20 MHz channel, current channel

center frequency index, supported channel width, frequency band, and wireless standard used by
the AP.

7 Check if the waveform contains another packet that you can decode.

Begin Packet Capture and Processing

Create a structure (APs) for storing this information for each successfully decoded beacon.

• SSID
• BSSID
• Vendor of AP
• Signal-to-noise ratio (SNR)

10 Software-Defined Radio

10-36

• Primary 20 MHz channel
• Current channel center frequency index
• Channel width
• Frequency band
• Operating mode supported by the AP
• MAC frame configuration
• Waveform in which the beacon exists
• Index value at which the non-HT beacon packet begins in the captured waveform

APs = struct(...
 "SSID",[],"BSSID",[],"Vendor",[],"SNR_dB",[],"Beacon_Channel",[], ...
 "Operating_Channel",[],"Channel_Width_MHz",[],"Band",[],"Mode",[], ...
 "MAC_Config",wlanMACFrameConfig,"Waveform",[],"Offset",[]);

Initialize a non-HT config object to use for processing incoming waveforms.

cbw = "CBW20";
cfg = wlanNonHTConfig(ChannelBandwidth=cbw);
ind = wlanFieldIndices(cfg);
indexAP = 1;

Begin scanning and decoding for specified channels.

for i = 1:length(rxsim.ChannelNumbers)

 fprintf("Scanning channel %d on band %.1f.\n",rxsim.ChannelNumbers(i),rxsim.FrequencyBand);
 if rxsim.ReceiveOnSDR
 sdrReceiver.CenterFrequency = rxsim.CenterFrequencies(i);
 capturedData = captureWaveform(sdrReceiver,rxsim.NumSamplesToCapture);
 else
 capturedData = rx.capturedWaveforms(:,i);
 end

 % Display spectrum and spectrogram
 if displayScope %#ok<*UNRCH>
 scope = spectrumAnalyzer(ViewType="spectrum-and-spectrogram",SampleRate=rxsim.RadioSampleRate,...
 TimeSpanSource="property",TimeSpan=rxsim.NumSamplesToCapture/rxsim.RadioSampleRate);
 scope(capturedData);
 end

 % Resample the captured data to 20 MHz for beacon processing.
 if osf ~= 1
 capturedData = resample(capturedData,20e6,rxsim.RadioSampleRate);
 end

 searchOffset = 0;
 while searchOffset<length(capturedData)

 % recoverPreamble detects a packet and performs analysis of the non-HT preamble.
 [preambleStatus,res] = recoverPreamble(capturedData,cbw,searchOffset);

 if matches(preambleStatus,"No packet detected")
 break;
 end

 OFDM Beacon Receiver Using Software-Defined Radio

10-37

 % Retrieve synchronized data and scale it with LSTF power as done
 % in the recoverPreamble function.
 syncData = capturedData(res.PacketOffset+1:end)./sqrt(res.LSTFPower);
 syncData = frequencyOffset(syncData,rxsim.RadioSampleRate/osf,-res.CFOEstimate);

 % Need only 4 OFDM symbols (LSIG + 3 more symbols) following LLTF
 % for format detection
 fmtDetect = syncData(ind.LSIG(1):(ind.LSIG(2)+4e-6*rxsim.RadioSampleRate/osf*3));

 [LSIGBits, failcheck] = wlanLSIGRecover(fmtDetect(1:4e-6*rxsim.RadioSampleRate/osf*1), ...
 res.ChanEstNonHT,res.NoiseEstNonHT,cbw);

 if ~failcheck
 format = wlanFormatDetect(fmtDetect,res.ChanEstNonHT,res.NoiseEstNonHT,cbw);
 if matches(format,"Non-HT")

 % Extract MCS from first 3 bits of L-SIG.
 rate = double(bit2int(LSIGBits(1:3),3));
 if rate <= 1
 cfg.MCS = rate + 6;
 else
 cfg.MCS = mod(rate,6);
 end

 % Determine PSDU length from L-SIG.
 cfg.PSDULength = double(bit2int(LSIGBits(6:17),12,0));
 ind.NonHTData = wlanFieldIndices(cfg,"NonHT-Data");

 if double(ind.NonHTData(2)-ind.NonHTData(1))> ...
 length(syncData(ind.NonHTData(1):end))
 % Exit while loop as full packet not captured.
 break;
 end

 nonHTData = syncData(ind.NonHTData(1):ind.NonHTData(2));
 bitsData = wlanNonHTDataRecover(nonHTData,res.ChanEstNonHT, ...
 res.NoiseEstNonHT,cfg);
 [cfgMAC, ~, decodeStatus] = wlanMPDUDecode(bitsData,cfg, ...
 SuppressWarnings=true);

 % Print additional information on all successfully packets
 if ~decodeStatus && displayAdditionalInfo
 payloadSize = floor(length(bitsData)/8);
 [modulation,coderate] = getRateInfo(cfg.MCS);

 fprintf("Payload Size: %d | Modulation: %s | Code Rate: %s \n",payloadSize,modulation,coderate);
 fprintf("Type: %s | Sub-Type: %s",cfgMAC.getType,cfgMAC.getSubtype);

 end

 % Extract information about channel from the beacon.
 if ~decodeStatus && matches(cfgMAC.FrameType,"Beacon")
 % Populate the table with information about the beacon.
 if isempty(cfgMAC.ManagementConfig.SSID)
 APs(indexAP).SSID = "Hidden";
 else
 APs(indexAP).SSID = string(cfgMAC.ManagementConfig.SSID);
 end

10 Software-Defined Radio

10-38

 fprintf("%s beacon detected on channel %d in band %.1f.\n",APs(indexAP).SSID,rxsim.ChannelNumbers(i),rxsim.FrequencyBand);

 APs(indexAP).BSSID = string(cfgMAC.Address3);
 if retrieveVendorInfo
 APs(indexAP).Vendor = determineVendor(cfgMAC.Address3);
 else
 APs(indexAP).Vendor = "Skipped";
 end
 [APs(indexAP).Mode, APs(indexAP).Channel_Width_MHz, operatingChannel] = ...
 determineMode(cfgMAC.ManagementConfig.InformationElements);

 if isempty(operatingChannel)
 % Default to scanning channel if operating channel
 % cannot be determined.
 operatingChannel = rxsim.ChannelNumbers(i);
 end

 APs(indexAP).Beacon_Channel = rxsim.ChannelNumbers(i);
 APs(indexAP).Operating_Channel = operatingChannel;
 APs(indexAP).SNR_dB = res.LLTFSNR;
 APs(indexAP).MAC_Config = cfgMAC;
 APs(indexAP).Offset = res.PacketOffset;
 APs(indexAP).Waveform = capturedData;
 indexAP = indexAP + 1;
 end
 % Shift packet search offset for next iteration of while loop.
 searchOffset = res.PacketOffset + double(ind.NonHTData(2));
 else
 % Packet is NOT non-HT; shift packet search offset by 10 OFDM symbols (minimum
 % packet length of non-HT) for next iteration of while loop.
 searchOffset = res.PacketOffset + 4e-6*rxsim.RadioSampleRate/osf*10;
 end
 else
 % L-SIG recovery failed; shift packet search offset by 10 OFDM symbols (minimum
 % packet length of non-HT) for next iteration of while loop.
 searchOffset = res.PacketOffset + 4e-6*rxsim.RadioSampleRate/osf*10;
 end
 end
end

Scanning channel 52 on band 5.0.

WLAN_5G beacon detected on channel 52 in band 5.0.

Downloading oui.csv from IEEE Registration Authority...

Scanning channel 56 on band 5.0.

w-inside beacon detected on channel 56 in band 5.0.
w-mobile beacon detected on channel 56 in band 5.0.
w-guest beacon detected on channel 56 in band 5.0.

Scanning channel 157 on band 5.0.

w-inside beacon detected on channel 157 in band 5.0.
w-mobile beacon detected on channel 157 in band 5.0.
w-guest beacon detected on channel 157 in band 5.0.

 OFDM Beacon Receiver Using Software-Defined Radio

10-39

Convert the APs structure to a table and display the information specified in step 6 on page 10-36 by
using the local function generateBeaconTable.

detectedBeaconsInfo = generateBeaconTable(APs,rxsim.FrequencyBand,retrieveVendorInfo)

detectedBeaconsInfo=7×9 table
 SSID BSSID Vendor SNR (dB) Primary 20 MHz Channel Current Channel Center Frequency Index Channel Width (MHz) Band Mode
 __________ ______________ ____________________________ ________ ______________________ ______________________________________ ___________________ ____ __________

 "WLAN_5G" "04D4C451C584" "ASUSTek COMPUTER INC." 34.57 52 50 "160" 5 "802.11ax"
 "w-inside" "B0B867F6B2D0" "Hewlett Packard Enterprise" 26.24 56 58 "80" 5 "802.11ac"
 "w-mobile" "B0B867F6B2D1" "Hewlett Packard Enterprise" 26.251 56 58 "80" 5 "802.11ac"
 "w-guest" "B0B867F6B2D2" "Hewlett Packard Enterprise" 25.843 56 58 "80" 5 "802.11ac"
 "w-inside" "B0B867F3D9B0" "Hewlett Packard Enterprise" 31.592 157 155 "80" 5 "802.11ac"
 "w-mobile" "B0B867F3D9B1" "Hewlett Packard Enterprise" 31.971 157 155 "80" 5 "802.11ac"
 "w-guest" "B0B867F3D9B2" "Hewlett Packard Enterprise" 33.3 157 155 "80" 5 "802.11ac"

if rxsim.ReceiveOnSDR
 release(sdrReceiver);
end

Further Exploration

• The detectedBeaconsInfo table shows only key information about the APs. To get further
information about the beacons, such as data rates supported by the AP, explore the MAC frame
configuration in the APs structure.

• If you have access to a configurable AP, change the channel width of your AP and rerun the
example to confirm the channel width.

Local Functions

These functions assist in processing the incoming beacons.

function waveform = captureWaveform(sdrReceiver,numSamplesToCapture)
% CAPTUREWAVEFORM returns a column vector of complex values given an
% SDRRECEIVER object and a scalar NUMSAMPLESTOCAPTURE value.
 % For a comm.SDRuReceiver object, use the burst capture technique to
 % acquire the waveform
 if isa(sdrReceiver,'comm.SDRuReceiver')
 waveform = complex(zeros(numSamplesToCapture,1));
 samplesPerFrame = sdrReceiver.SamplesPerFrame;
 for i = 1:sdrReceiver.NumFramesInBurst
 waveform(samplesPerFrame*(i-1)+(1:samplesPerFrame)) = sdrReceiver();
 end
 else
 waveform = capture(sdrReceiver,numSamplesToCapture);
 end
end

function [modulation,coderate] = getRateInfo(mcs)
% GETRATEINFO returns the modulation scheme as a character array and the
% code rate of a packet given a scalar integer representing the modulation
% coding scheme
switch mcs
 case 0 % BPSK
 modulation = 'BPSK';
 coderate = '1/2';

10 Software-Defined Radio

10-40

 case 1 % BPSK
 modulation = 'BPSK';
 coderate = '3/4';
 case 2 % QPSK
 modulation = 'QPSK';
 coderate = '1/2';
 case 3 % QPSK
 modulation = 'QPSK';
 coderate = '3/4';
 case 4 % 16QAM
 modulation = '16QAM';
 coderate = '1/2';
 case 5 % 16QAM
 modulation = '16QAM';
 coderate = '3/4';
 case 6 % 64QAM
 modulation = '64QAM';
 coderate = '2/3';
 otherwise % 64QAM
 modulation = '64QAM';
 coderate = '3/4';
end
end

function vendor = determineVendor(mac)
% DETERMINEVENDOR returns the vendor name of the AP by extracting the
% organizationally unique identifier (OUI) from the specified MAC address.

persistent ouis

vendor = strings(0);
try
 if isempty(ouis)
 if ~exist("oui.csv","file")
 disp("Downloading oui.csv from IEEE Registration Authority...")
 options = weboptions("Timeout",10);
 websave("oui.csv","http://standards-oui.ieee.org/oui/oui.csv",options);

 end
 ouis = readtable("oui.csv",VariableNamingRule="preserve");
 end

 % Extract OUI from MAC Address.
 oui = mac(1:6);

 % Extract vendors name based on OUI.
 vendor = string(cell2mat(ouis.("Organization Name")(matches(ouis.Assignment,oui))));

catch ME
 % Rethrow caught error as warning.
 warning(ME.message+"\nTo skip the determineVendor function call, set retrieveVendorInfo to false.",[]);
end

if isempty(vendor)
 vendor = "Unknown";
end

end

 OFDM Beacon Receiver Using Software-Defined Radio

10-41

function [mode,bw,operatingChannel] = determineMode(informationElements)
% DETERMINEMODE determines the 802.11 standard that the AP uses.
% The function checks for the presence of HT, VHT, and HE capability
% elements and determines the 802.11 standard that the AP uses. The element
% IDs are defined in IEEE Std 802.11-2020 and IEEE Std 802.11ax-2021.

elementIDs = cell2mat(informationElements(:,1));
IDs = elementIDs(:,1);

if any(IDs==255)
 if any(elementIDs(IDs==255,2)==35)
 % HE Packet Format
 mode = "802.11ax";
 else
 mode = "Unknown";
 end
 vhtElement = informationElements{IDs==192,2};
 htElement = informationElements{IDs==61,2};
 [bw,operatingChannel] = determineChannelWidth(htElement,vhtElement);
elseif any(IDs==191)
 % VHT Packet Format
 mode = "802.11ac";
 vhtElement = informationElements{IDs==192,2};
 htElement = informationElements{IDs==61,2};
 [bw,operatingChannel] = determineChannelWidth(htElement,vhtElement);
elseif any(IDs==45)
 % HT Packet Format
 mode = "802.11n";
 htElement = informationElements{IDs==61,2};
 [bw,operatingChannel] = determineChannelWidth(htElement);
else
 % Non-HT Packet Format
 % Exclude b as only DSSS is supported
 mode ="802.11a/g/j/p";
 bw = "Unknown";
 operatingChannel = [];
end

end

function [bw,operatingChannel] = determineChannelWidth(htElement,varargin)
% DETERMINECHANNELWIDTH returns the bandwidth of the channel from the
% beacons operation information elements as defined in IEEE Std 802.11-2020
% Table 11-23.

msbFirst = false;

% Convert to bits to get STA channel width value in 3rd bit.
htOperationInfoBits = int2bit(htElement(2),5*8,msbFirst);
operatingChannel = 0;

if nargin == 2
 vhtElement = varargin{1};

 % VHT Operation Channel Width Field
 CW = vhtElement(1);

10 Software-Defined Radio

10-42

 % Channel Center Frequency Segment 0
 CCFS0 = vhtElement(2);
 % Channel Center Frequency Segment 1
 CCFS1 = vhtElement(3);

 if htOperationInfoBits(3) == 0
 bw = "20";
 operatingChannel = CCFS0;
 elseif CW == 0
 % HT Operation Channel Width Field is 1
 bw = "40";
 operatingChannel = CCFS0;
 elseif CCFS1 == 0
 % HT Operation Channel Width Field is 1 and
 % VHT Operation Channel Width Field is 1
 bw = "80";
 operatingChannel = CCFS0;
 elseif abs(CCFS1 - CCFS0) == 8
 % HT Operation Channel Width Field is 1 and
 % VHT Operation Channel Width Field is 1 and
 % CCFS1 is greater than 0
 bw = "160";
 operatingChannel = CCFS1;
 else
 % HT Operation Channel Width Field is 1 and
 % VHT Operation Channel Width Field is 1 and
 % CCFS1 is greater than 0 and
 % |CCFS1 - CCFS0| is greater than 16
 bw = "80+80";
 end
end

if operatingChannel == 0
 if htOperationInfoBits(3) == 1
 bw = "40";
 secondaryChannelOffset = bit2int(htOperationInfoBits(1:2),2,false);
 if secondaryChannelOffset == 1
 % Secondary Channel is above the primary channel.
 operatingChannel = htElement(1) + 2;
 elseif secondaryChannelOffset == 3
 % Secondary Channel is below the primary channel.
 operatingChannel = htElement(1) - 2;
 else
 warning("Could not determine operating channel.")
 end

 else
 bw = "20";
 operatingChannel = htElement(1);
 end
end

end

function tbl = generateBeaconTable(APs,band,retrieveVendorInfo)
% GENERATEBEACONTABLE converts the access point structure to a table and
% cleans up the variable names.

 OFDM Beacon Receiver Using Software-Defined Radio

10-43

tbl = struct2table(APs,"AsArray",true);
tbl.Band = repmat(band,length(tbl.SSID),1);
tbl = renamevars(tbl,["SNR_dB","Beacon_Channel","Operating_Channel","Channel_Width_MHz"], ...
 ["SNR (dB)","Primary 20 MHz Channel","Current Channel Center Frequency Index", ...
 "Channel Width (MHz)"]);
if retrieveVendorInfo
 tbl = tbl(:,1:9);
else
 tbl = tbl(:,[1:2,4:9]);
end

end

10 Software-Defined Radio

10-44

	PHY Modeling
	PHY Simulation of Bluetooth BR/EDR, LE, and WLAN Coexistence
	802.11be Waveform Generation
	802.11az Waveform Generation
	Build VHT PPDU
	Generate VHT Multi-User Waveform
	Basic VHT Data Recovery
	802.11ax Waveform Generation
	Basic WLAN Link Modeling
	802.11ac Multi-User MIMO Precoding

	MAC Modeling
	802.11 MAC Frame Generation
	802.11 MAC Frame Decoding
	802.11ac Waveform Generation with MAC Frames
	802.11 OFDM Beacon Frame Generation

	Signal Transmission
	802.11be Transmitter Measurements
	802.11ba WUR Waveform Generation and Analysis
	802.11ad Waveform Generation with Beamforming
	802.11ac Transmit Beamforming
	802.11ah Waveform Generation
	802.11n Link in Simulink

	Signal Reception
	Recover and Analyze Packets in 802.11 Waveform
	Recovery Procedure for an 802.11ax Packet
	Recovery Procedure for an 802.11ac Packet
	Joint Sampling Clock and Carrier Frequency Offset Tracking
	Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel
	End-to-End VHT Simulation with Frequency Correction

	Propagation Channel Models
	802.11ad Packet Error Rate Single Carrier PHY Simulation with TGay Channel
	802.11ac Packet Error Rate Simulation for 8x8 TGac Channel
	802.11n Packet Error Rate Simulation for 2x2 TGn Channel
	802.11ah Packet Error Rate Simulation for 2x2 TGah Channel
	Delay Profile and Fluorescent Lighting Effects

	End-to-End Simulation
	Detect Human Presence Using WLAN Signals and Deep Learning
	SNR Definition in End-to-End Simulations
	802.11be Packet Error Rate Simulation for Uplink Trigger-Based Format
	802.11be Downlink Multi-User MIMO and OFDMA Throughput Simulation
	802.11be Packet Error Rate Simulation for an EHT MU Single-User Packet Format
	802.11ax Packet Error Rate Simulation for Single-User Format
	802.11ax Downlink OFDMA and Multi-User MIMO Throughput Simulation
	802.11ax Packet Error Rate Simulation for Uplink Trigger-Based Format
	802.11ax Compressed Beamforming Packet Error Rate Simulation
	802.11ax Feedback Status Misdetection Simulation for Uplink Trigger-Based Feedback NDP
	Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning
	802.11az Positioning Using Super-Resolution Time of Arrival Estimation
	Design a Deep Neural Network with Simulated Data to Detect WLAN Router Impersonation
	Test a Deep Neural Network with Captured Data to Detect WLAN Router Impersonation
	802.11ad Packet Error Rate Simulation for Control PHY
	802.11ad Single Carrier Link with RF Beamforming in Simulink
	802.11p Packet Error Rate Simulation for a Vehicular Channel
	802.11 Dynamic Rate Control Simulation

	System-Level Simulation
	Spatial Reuse with BSS Coloring in 802.11ax Network Simulation
	802.11ax Downlink OFDMA Multinode System-Level Simulation
	Noncollaborative Bluetooth LE Coexistence with WLAN Signal Interference
	Get Started with WLAN System-Level Simulation in MATLAB
	802.11ax Multinode System-Level Simulation of Residential Scenario
	802.11 MAC and Application Throughput Measurement
	802.11ax System-Level Simulation with Physical Layer Abstraction
	802.11ax PHY-Focused System-Level Simulation
	Physical Layer Abstraction for System-Level Simulation
	Generate and Visualize FTP Application Traffic Pattern
	Simulate an 802.11ax Network with Uplink and Downlink Application Traffic
	WLAN System-Level Simulation Statistics
	Default Statistics
	Additional Statistics

	Simulate an 802.11ax Network with Full MAC and Abstracted PHY
	Create, Configure, and Simulate an 802.11ax Mesh Network
	Simulate a Multiband 802.11ax Network
	Simulate an 802.11ax Hybrid Mesh Network

	Test and Measurement
	Modeling and Testing an 802.11ax RF Receiver with 5G Interference
	Modeling and Testing an 802.11ax RF Transmitter
	802.11ac Receiver Minimum Input Sensitivity Test
	802.11ac Transmitter Measurements
	Generate Wireless Waveform in Simulink Using App-Generated Block
	802.11ad Transmitter Spectral Emission Mask Testing
	802.11p Spectral Emission Mask Testing

	Code Generation and Deployment
	What is C Code Generation from MATLAB?
	Using MATLAB Coder
	C/C++ Compiler Setup
	Functions and System Objects That Support Code Generation

	Code Generation of WLAN Toolbox Features

	Software-Defined Radio
	Image Transmission and Reception Using 802.11 Waveform and SDR
	OFDM Wi-Fi Scanner Using SDR Preamble Detection
	OFDM Beacon Receiver Using Software-Defined Radio

